Perple_X Solution Model Glossary, Alternate Sorting

 

Perple_X Solution Model Table Sorted by Solution Names

 


The compositional variables w, x, y, and z may vary between zero and unity and are determined in Perple_X as a function of computational variables by free-energy minimization. For source references refer to the Perple_X solution model glossary.

Jan 20, 2010.


Symbol

Solution

Formula

Notes

Source

Aki(fab)

akimotoite

MgxFex–yAl2ySiyO3, x+y≤1

Estimated regular parameter from source. Ilmenite structure. Use with sfo05ver.dat [33,43].

[17]

Aki(stx7)

akimotoite

MgxFex–yAl2ySiyO3, x+y≤1

Ilmenite structure. Use with stx07ver.dat [44].

[44]

Aki(stx8)

akimotoite

MgxFex–yAl2ySiyO3, x+y≤1

Ilmenite structure. Use with stx08ver.dat [54].

[54]

Kf

alkali feldspar

NaxKxAlSi3O8

Waldbaum & Thompson mixing model for sanidine combined with low structural state endmembers.

[47]

Anth

anthophyllite

Mg7xFe7(1–x)Si8O22(OH)2

Ideal, does not extrapolate well to high pressure (P>3GPa).

 

Atg

antigorite

Mg48xFe48(1–x)Si34O85(OH)62 

Ideal.

 

Bio(HP)

biotite

K[MgxFeyMn1–x–y]wAl1+2wSiwO10(OH)2, x+y≤1

Speciation model, new parameters from THERMOCALC, extended to cover Mn-solution.

[41]

Bio(TCC)

biotite

K[MgxFeyMn1–x–y]u–v–wFe3+wTiuAl1+vSivO10(OH)2-2u, x+y≤1, u+v+w≤1

Ti-oxy and Fe3+-Tschermaks exchanges.

[45]

TiBio(HP)

biotite

K[MgxFeyMn1–x–y]w–z/2TizAl1+2wSiwO10(OH)2, x+y≤1

Bio(HP) extended to cover a, dubious, Ti substitution.

[41,52]

TiBio(WPH)

biotite

K[MgxFe1–x]3–u–v–wFe3+wTiuAl1+vSi3–vO10(OH)2-2u, u+v+w≤1

Superior to TiBio(HP), but dubious Ti site population, cf Bio(TCC).

[51]

B

brucite

MgxFex(OH)

Ideal.

 

C2/c(stx)

C2/c pyroxene

[MgxFex]4Si4O12

Use with sfo05ver.dat [33,43] and stx07ver.dat [44].

[43]

C2/c(stx8)

C2/c pyroxene

[MgxFex]4Si4O12

Use with stx08ver.dat [54].

[54]

Cc(AE)

calcite

CaxMgxCO3

Entropy model should be checked against source.

[2]

CF(stx8)

calcium ferrite

NaxMgyFex–yAl2-xSixO4, x+y≤1

Use with stx08ver.dat [54].

[54]

Chl(HP)

chlorite

[MgxFewMn1–x–w]y+zAl2(1+y–z)Siy+zO10(OH)8, x+w≤1

Speciation model. Under most circumstances afchl endmember can be excluded to save computational resources.

[29]

Ctd(HP)

chloritoid

MgxFeyMnx–yAl2SiO5(OH)2, x+y≤1

 

[52]

Amph(DHP)

clinoamphibole

 

Superceded by Amph(DPW)

[11]

Amph(DPW)

clinoamphibole

 

Superceded by cAmph(DP).

[12]

cAmph(DP)

clinoamphibole

Ca2(y+u+v)Nau+2(w+z)[MgxFex]7–3u–2v–4(w+z)Fe3+2zAl4y+3v+2wSi8–(y+v)O22(OH)2, u+v+w+y+z≤1

Costly speciation model, see commentary in solut_09.dat.

[14]

GlTrTs

clinoamphibole

Ca2–2wNa2w[MgxFex]3+2yAl3–3y–wSi7+w+yO22(OH)2, w+y≤1

Can be used in preference to GlTrTsPg to save computational resources for non-pargasitic (high P) clinoamphibole.

[48,50]

GlTrTsPg

clinoamphibole

Ca2–2wNaz+2w[MgxFex]3+2y+zAl3–3y–wSi7+w+yO22(OH)2, w+y+z≤1

Preferable for calculations over a large pressure range. See also GlTrTs and TrTsPg(HP).

[48,50]

TrTsPg(HP)

clinoamphibole

Ca2Naz[MgxFe1–x]3+2y+zAl3–3ySi7+yO22(OH)2, y+z≤1

Use in preference to GlTrTsPg to reduce costs for glaucophane-poor (low P) clinoamphibole.

[48,50]

chum

clinohumite

Ti-F-OH-Mg-clinohumite.

Model should be checked against source.

[15]

Chum

clinohumite

Mg9xFe9(1–x)Si4O16(OH)

Ideal.

 

Cpx(h)

clinopyroxene

NayCay+z[MgxFex]y–zAl1-y+zSi2+zO6, y+z≤1

High structural state, entropy model should be verified against sources. Stability seems excessive.

[21,22]

Cpx(HP)

clinopyroxene

NayCayMgxyFe(1–x)yAlySi2O6

Disordered, new parameters from THERMOCALC, extended to cover Acmite, CaTs, and Cr-solution

[26]

Cpx(l)

clinopyroxene

NayCay+z[MgxFex]y–zAl1-y+zSi2+zO6, y+z≤1

Low structural state, entropy model should be verified against sources. Stability seems reasonable.

[21,22]

Cpx(stx)

clinopyroxene

Ca2yMg4–2x–2yFe2xSi4O12

Use with sfo05ver.dat [33,43].

[43]

Cpx(stx7)

clinopyroxene

Ca2yMg4–2x–2yFe2xSi4O12

Use with stx07ver.dat [44].

[44]

Cpx(stx8)

clinopyroxene

[Cax–yNaxMgy]2[FewMgy+zAlw–x–y–z]2Si4O12, w+x+y+z≤1

Use with stx08ver.dat [54].

[54]

Omph(HP)

clinopyroxene

Nay[CaMgxFex]yAlySi2O6

Speciation model, new parameters from THERMOCALC, extended to Fe-solution.

[26]

Omph(GHP)

clinopyroxene

Nay+w[CaMgxFe2+(1–x)]y–wAlyFe3+wSi2O6

Costly speciation model.

[25]

Qpx

clinopyroxene

CayMgx(1+y)Fe(1–x)(1+y)Si2O6

C2/c structure. Model should be checked against source.

[39]

lcENDI

clinopyroxne

CayMg1+ySi2O6

C2/c structure. Model should be checked against source.

[13]

lcFSHD

clinopyroxne

CayFe1+ySi2O6

C2/c structure. Model should be checked against source.

[13]

Clint

clintonite

CaMgxAl2+2xSixO10(OH)2

Ideal.

 

hCrd

cordierite

Mg2xFe2yMn2(1–x–y)Al4Si5O18•(H2O)z, x+y≤1

Ideal

 

Cumm

cummingtonite

Mg7xFe7(1–x)Si8O22(OH)2

Ideal.

 

Do(AE)

dolomite

CaMgxFex(CO3)2

Entropy model should be checked against source.

[2]

Do(HP)

dolomite

CaMgxFex(CO3)2

 

[30]

oCcM(HP)

dolomite

CaxMgxCO3

Speciation model.

[28]

Ep(HP)

epidote

Ca2Al3–2xFe2xSi3O12OH

Speciation model, parameters from THERMOCALC.

 

AbFsp(C1)

feldspar

KyNaxCax–yAlx–ySi2+x+yO8, x+y≤1

C1 structural state. x>2/3, 1–x–y<~1/10. Dubious, see warnings in solution model file.

[28]

feldspar

feldspar

KyNaxCax–yAlx–ySi2+x+yO8, x+y≤1

High structural state.

[19]

Fsp(C1)

feldspar

KyNaxCax–yAlx–ySi2+x+yO8, x+y≤1

C1 structural state. See warnings in solution model file.

[28]

OrFsp(C1)

feldspar

KyNaxCax–yAlx–ySi2+x+yO8, x+y≤1

C1 structural state. y>1/3, 1–x–y<~1/10. Dubious, see warnings in solution model file.

[28]

Pl(I1,HP)

feldspar

KyNaxCax–yAlx–ySi2+x+yO8, x+y≤1

I1 structural state. y<0.04, 1–x–y<~1/10. See warnings in solution model file.

[28]

F

fluid

(H2O)x(CO2)x

Can be used with any Perple_X internal fluid EoS that allows XCO2 as an independent variable.

[10]

F(salt)

fluid

(H2O)x(CO2)y(NaCl)x–y

Choose fluid EoS #5 (CORK) to use this model! VERTEX will automatically computer activities from the Hafner et al. H2O-CO2-NaCl EoS.

[3]

GCOHF

fluid

H2xOx

Can be used with any Perple_X internal fluid EoS that allows XO as an independent variable.

[9]

GrAd

garnet

Ca3Fe3+2(1–x)Al2xSi3O12

Ideal.

 

GrAd(EWHP)

garnet

[FexCayMg1–x–y]3[Fe1–wAlw]2Si3O12 x+y ≤1

Verify in original reference that W’s are for ionic model.

[16]

GrPyAlSp(B)

garnet

Fe3xCa3yMg3zMn3(1–x–y–z)Al2Si3O12, x+y+z≤1

 

[5]

GrPyAlSp(G)

garnet

Fe3xCa3yMg3zMn3(1–x–y–z)Al2Si3O12, x+y+z≤1

Check against published version.

[20]

Gt(HP)

garnet

Fe3xCa3yMg3zMn3(1–x–y–z)Al2Si3O12, x+y+z≤1

 

[30]

Gt(stx)

garnet

[FexCayMg(1-x+y+z/3)]3Al2–2zSi3+zO12, x+y≤1

Limited majoritic substitution. Use with sfo05ver.dat [33,43] and stx07ver.dat [44].

[43]

Gt(stx8)

garnet

[(Na1/3Al2/3)wFexCayMg1-w-x-y]3[MgzAl1-z-wSiw+z]2Si2O12, w+x+y+z≤1

Use with stx08ver.dat [54].

[54]

Gt(WPH)

garnet

[FexCayMgzMn1–x–y–z]3[Fe1–wAlw]2Si3O12 x+y+z≤1

Parameters change with the wind.

[52]

Gl

glaucophane

Na2Mg3xFe3(1–x)Al2Si8O22(OH)2

Ideal. GlTrTsPg model should be preferable.

 

IlGkPy

ilmenite

MgxMnyFe1–x–yTiO3, x+y≤1

Ideal.

 

IlHm(A)

ilmenite

Fe2–xTixO3

ilmenite coexisiting with magnetite, its performance at T~1473 K criticized by Ghiorso, but this probably the best model for T<1073 K. Gives solvus critical T~973 K, x~1/2.                 

[1]

MF

magnesioferrite

MgxFexO4

Ideal.

 

Wus(fab)

magnesiowuestite

MgxFe1–xO

Estimated regular parameter from source. Use with sfo05ver.dat [33,43]

[17]

Wus(stx7)

magnesiowuestite

MgxFe1–xO

Use with stx07ver.dat [44] and stx08ver.dat [54].

[44]

M(HP)

magnesite

MgxFexCO3

 

[30]

Mt(W)

magnetite

TixFexO4

Valid from 800 to 1300 C.

[53]

MtUl(A)

magnetite

TixFexO4

Akimoto model. Gives solvus critical T~763K, x~1/3.

[1]

MaPa

margarite

CaxNaxAl3+xSi3-xO10(OH)2

Unpublished fit to field observations, gives solvus with Tcrit=972 K, Xma=1/3.

 

casmelt

melt

CaO-Al2O3-SiO2 melt

Dubious.

[6]

melt(HP)

melt

Na-Mg-Al-Si-K-Ca-Fe hydrous silicate melt

Model does not behave well at high pressure (P>1GPa), see other warnings in solution model file. For granitic compositions.

[27,49]

MELTS(GS)

melt

Na-Mg-Al-Si-K-Ca-Fe hydrous silicate melt

Model for P<1GPa, see warnings in solution model file. For mafic-ultramafic compositions.

[23]

pMELTS(G)

melt

Na-Mg-Al-Si-K-Ca-Fe hydrous silicate melt

Model for P>1 GPa? See warnings in solution model file. For mafic-ultramafic compositions.

[24]

Toop-melt

melt

Toop-Samis model for anhydrous silicate melts

 

[40]

KN-Phen

mica

KxNaxMgyFezAl3–2(y+z)Si3+y+zO10(OH)2, z+y≤1

Extension of MuPa solution model for phengite.

 

MuPa

mica

KxNaxAl3Si3O10(OH)2

Basis for most white mica models.

[7]

Pheng(HP)

mica

KxNaxMgyFezAl3–2(y+z)Si3+y+zO10(OH)2

Only for potassic phengite. Parameters from THERMOCALC.

 

Mica(CHA)

mica

KyCaxNax–y(Mg1-uFeu)zMgw TiwAl3+x-w-zSi3-x+zO10(OH)2, x+y≤1, w+zy,

Less costly than Mica(CHA1) because it does not allow Ti and Tschermaks substitutions in Ca- and Na- subsystems.

[4,8]

Mica(CHA1)

mica

KyCaxNax–y(Mg1-uFeu)w+z TiwAl3+x-w-zSi3-x+zO10(OH)2, x+y≤1, w+z≤1

See Mica(CHA); allows Ti and Tschermaks substitutions in Ca- and Na- subsystems.

[4,8]

Mont

monticellite

CaxMgxSiO4

Ideal.

 

Neph(FB)

nepheline

NaxKxAlSiO4

 

[18]

O(HP)

olivine

Mg2xFe2yMn2(1–x–y)SiO4, x+y≤1

 

[30]

O(SG)

olivine

Mg2xFe2–2xSiO4

Original model refit with one-parameter speciation model.

[42]

O(stx)

olivine

[MgxFex]2SiO4

Use with sfo05ver.dat [33,43]

[43]

O(stx7)

olivine

[MgxFex]2SiO4

Use with stx07ver.dat [44].

[44]

O(stx8)

olivine

[MgxFex]2SiO4

Use with stx08ver.dat [54].

[54]

oAmph(DP)

orthoamphibole

Ca2uNau+2(w+z)[MgxFex]7–3u–2v–4(w+z)Fe3+2zAl4y+3v+2wSi8–(y+v)O22(OH)2, u+v+w+y+z≤1

Two parameter speciation model (costly), see comments in solut_09.dat.

[14]

Mn-Opx

orthopyroxene

[MnwMgxFex–w]yAl2ySiyO6, x+w≤1

Should be merged with Opx(HP).

 

Opx(HP)

orthopyroxene

[MgxFex]yAl2ySiyO6

Speciation model.

[26]

Opx(stx)

orthopyroxene

[MgxFex]4–2yAl4(1–y)Si4O12

Use with sfo05ver.dat [33,43] and stx07ver.dat [44].

[43]

Opx(stx8)

orthopyroxene

[CawFexMgx–w]2[FexAlyMgx–y]2Si4O12, x+w≤1, x+y≤1

Use with stx08ver.dat [54].

[54]

Osm(HP)

osumilite

KFe2–2xMg2x+yAl5–ySi7+yO30

Ideal.

[31]

P

periclase

MgxFexO

Ideal.

 

Pv(fab)

perovskite

MgxFex–yAl2ySiyO3, x+y≤1

Estimated regular parameter from source. Use with sfo05ver.dat [33,43].

[17]

Pv(stx7)

perovskite

MgxFex–yAl2ySiyO3, x+y≤1

Use with stx07ver.dat [44] and stx08ver.dat [54].

[44]

A-phase

phase A

Mg7xFe7(1–x)Si2O8(OH)6

Ideal.

 

Fphl

phlogopite

KMg3AlSi3O10(OH)2(1–x)Fx

Ideal.

 

Pl(h)

plagioclase

NaxCaxAlxSi2+xO8

High structural state.

[35]

Pl(stx8)

plagioclase

NaxCaxAlxSi2+xO8

Use with stx08ver.dat [54].

[54]

Ppv(og)

post-perovskite

MgxFex–yAl2ySiyO3, x+y≤1

Ideal (Henry’s law limit). Use with sfo05ver.dat [33,43] and stx07ver.dat [44].

[37],[38]

Ppv(stx8)

post-perovskite

MgxFex–yAl2ySiyO3, x+y≤1

Use with stx08ver.dat [54].

[54]

Pmp

pumpellyite

pmp-fpmp-mpmp

Model from Claudio Mazzoli.

 

Ring(stx)

ringwoodite

[MgxFex]2SiO4

Use with sfo05ver.dat [33,43].

[43]

Ring(stx7)

ringwoodite

[MgxFex]2SiO4

Use with stx07ver.dat [44].

[44]

Ring(stx8)

ringwoodite

[MgxFex]2SiO4

Use with stx08ver.dat [54].

[54]

San

sanidine

NaxKxAlSi3O8

 

[47]

San(TH)

sanidine

NaxKxAlSi3O8

 

[46]

Sapp

sapphirine

[MgxFex]y/2AlySiy/2O20

Ideal, site occupancies as in THERMOCALC but extended for Fe-solution, see model comments.

 

Scap

scapolite

Na3–3xCa1+3xAl3(1+x)Si6–3xO24CO3

Presumably from B.K. Kuhn’s Phd.

 

Scp

scapolite

mizzonite-meionite

Site occupancies as in R. Abart’s Ph.D. thesis, ETH, 1995.

 

GaHcSp

spinel

MgxFeyZnx–yAl2O3, x+y≤1

Normal spinel, data from Jiri Konopasek.

[36]

Sp(GS)

spinel

MgxFe1–xAl2O3

From Ganguly & Saxena,'87. Ghiorso ’91 is similar.

 

Sp(HP)

spinel

MgxFe1–xAl2O3

 

 

Sp(JR)

spinel

MgxFe1–xAl2O3

 

[32]

Sp(stx)

spinel

MgxFe1–xAl2O3

1/8 inverse spinel. Use with sfo05ver.dat [33,43]

[43]

Sp(stx7)

spinel

MgxFe1–xAl2O3

Use with stx07ver.dat [44].

[44]

Sp(stx8)

spinel

MgxFe1–xAl2O3

Use with stx08ver.dat [54].

[54]

St(HP)

staurolite

Mg4xFe4yMn4(1–x–y)Al18Si7.5O48H4, x+y≤1

Parameters from THERMOCALC.

 

Sud

sudoite

Mg2xFe2–2xAl4Si3O10(OH)4

Ideal, mixing on 2 octahedral sites.

 

Sud(Livi)

sudoite

Mg2xFe2–2xAl4Si3O10(OH)4

Ideal, mixing on 4 octahedral sites.

[34]

T

talc

[MgxFe1–x]yAl2ySiyO10(OH)2

Ideal.

 

Tr

tremolite

Ca2Mg5xFe5(1–x)Si8O22(OH)2

Ideal. GlTrTsPg model should be preferable.

 

Wad(stx)

waddsleyite

[MgxFe1–x]2SiO4

Use with sfo05ver.dat [33,43]

[43]

Wad(stx7)

waddsleyite

[MgxFe1–x]2SiO4

Use with stx07ver.dat [44].

[44]

Wad(stx8)

waddsleyite

[MgxFe1–x]2SiO4

Use with stx08ver.dat [54].

[54]