
Geodinamira Acta (Paris) 1998, 1 1, 2-3, 55-84 

Compaction-driven fluid flow 
in viscoelastic rock 

J.A.D.  Conno l ly*  a n d  Y u .  Yu. P o d l a d c h i k o v  

D e p a r t m e n t  o f  E a r t h  S c i e n c e s ,  E T H - Z e n t r u m ,  S o n n e g g s t r a s s e  5, CH-8092 Zur i ch ,  S w i t z e r l a n d  

( R e c e i v e d  24 J u n e  1997; a c c e p t e d  22 D e c e m b e r  1997) 

Abstract - Compaction driven fluid flow is inherently tion equations are common though previously unrecognized. 
unstable such that an obstruction to upward fluid flow (i.e. a The transition between the solutions depends on the pore 
shock) may induce fluid-filled waves of porosity, propagated volume carried by the wave and the Darcyian velocity of the 
by dilational deformation due to an effective pressure gradient background fluid flux. Periodic solutions are possible for all 
within the wave. Viscous porosity waves have attracted atten- velocities, whereas solitary solutions require large volumes 
tion as a mechanism for melt transport, but are also a mecha- and low velocities. 0 Elsevier, Paris 
nism for both the transport and trapping of fluids released by 
diagenetic and metamorphic reactions. We introduce a mathe- 
matical formulation applicable to compaction driven flow for 
the entire range of rheological behaviors realized in the litho- 
sphere. We then examine three first-order factors that influence 
the character of fluid flow: (1) thermally activated creep, 
(2) dependence of bulk viscosity on porosity, and (3) fluid flow 
in the limit of zero initial connected porosity. For normal 
geothermal gradients, thermally activated creep stabilizes hori- 
zontal waves, a geometry that was thought to be unstable on 
the basis of constant viscosity models. Implications of this 
stabilization are that: ( I )  the vertical length scale for compac- 
tion driven flow is generally constrained by the activation 
energy for viscous deformation rather than the viscous 
compaction length, and (2) lateral fluid flow in viscous 
regimes may occur on greater length scales than anticipated 
from earlier estimates of compaction length scales. In viscous 
rock, inverted geothermal gradients stabilize vertically elon- 
gated waves or vertical channels. Decreasing temperature 
toward the earth's surface can induce an abrupt transition from 
viscous to elastic deformation-propagated fluid flow. Below 
the transition, fluid flow is accomplished by short wavelength, 
large amplitude waves; above the transition flow is by high 
velocity, low amplitude surges. The resulting transient flow 
patterns vary strongly in space and time. Solitary porosity 
waves may nucleate in viscous, viscoplastic, and viscoelastic 
rheologies. The amplitude of these waves is effectively unli- 
mited for physically realistic models with dependence of bulk 
viscosity on porosity. In the limit of zero initial connected 
porosity, arguably the only model relevant for melt extraction, 
travelling waves are only possible in a viscoelastic matrix. 
Such waves are truly self-propagating in that the fluid and the 
wave phase velocities are identical; thus, if no chemical proc- 
esses occur during propagation, the waves have the capacity to 
transmit geochemical signatures indefinitely. In addition to 
solitary waves, we find that periodic solutions to the compac- 

compaction-driven fluid flow I porosity waves I melt extrac- 
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1. Introduction 

Classical treatments of fluid flow in  porous  media  
begin with the  assumption of  a constant permeabili ty 
matrix.  However,  the differences between fluid and rock 
pressure can b e  large enough in geological environ- 
ments,  particularly at  elevated temperature,  that a sig- 
nificant amount  of  dilational deformation must  
accompany fluid flow. Dilational deformation increases 
both the storage capacity of the rock matrix and the  
matrix permeability. T h e  effect on  storativity does  not 
fundamentally alter the  nature of fluid f low a s  compared 
to that anticipated for a rigid solid matrix. In  contrast ,  
the  effect o n  permeabili ty i s  highly nonlinear and has  
profound implications fo r  the  nature of  fluid flow. T h e  
most important implication is that a perturbation (e.g. a 
seismic event o r  chemical reaction) to  an  initial regime 
o f  steady fluid flow can initiate a regime in  which flow 
is  accomplished by  a surge  o r  episodic waves o f  fluid- 
filled porosity depending o n  whether the  rock deforma- 
t ion is  elastic o r  viscous, respectively. Although the  
wave propagated character o f  fluid flow in  deformable 
media  has  been recognized for some  time, previous 
investigations have considered either purely elastic [ I ]  
o r  purely viscous [2-4] deformation. These  formula- 
t ions are  useful fo r  restricted problems but cannot  b e  
used to  study the  entire spectrum of behaviour within 
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the earth's lithosphere, which is dominated by elastic 
deformation at the surface but becomes increasingly vis- 
cous with depth [5]. Our intention here is to present a 
single formulation to describe fluid flow in deformable 
viscoelastic rocks and to classify the different types of 
fluid flow that can arise in geologic environments. 

Compaction driven flow is of importance to under- 
standing geological processes that involve the expulsion 
and migration of fluids. Problems concerning the expul- 
sion of sedimentary pore fluids and the extraction of 
melts from the lithosphere have received the most atten- 
tion. Although the fundamental problem is similar in 
both cases [6], the disparity in the approaches taken to 
solve these problems is remarkable. In studies of sedi- 
ment compaction, it is generally assumed that the sedi- 
ment can be described by an elastoplastic rheology. 
Because elastic deformation is reversible, this model is 
generally inadequate to explain natural porosity and 
fluid pressure distributions [7]. The role of pressure 
solution creep, a viscous rheology [a], in sediment com- 
paction is well documented [9, 101. Moreover, a simple 
viscoplastic compaction model can reproduce many fea- 
tures observed in sedimentary basins [ I  I]. These obser- 
vations provide a strong incentive for the introduction of 
a unified formalism for the description of compaction 
processes. 

The instability of steady fluid flow through a defor- 
mable viscous matrix was first recognized in the geolo- 
gical literature as a potential mechanism for extracting 
melts from the lithosphere. One-dimensional models 
showed that the melt from a partially molten layer 
would be propagated in sill-like porosity waves [2-41. 
Subsequently it was shown that such one-dimensional 
waves are unstable with respect to spherical, diapir-like 
waves in two and three dimensions [12-141, wave 
geometries that are inconsistent with dike- and sill-like 
natural features. This has prompted the introduction of 
more complex reactive transport models [15]. Results of 
reactive transport modelling are seductive, but the pro- 
cess is poorly constrained and predicated on the validity 
of the earlier models of viscous compaction that incor- 
porate an oversimplification and an inappropriate initial 
condition. The oversimplification is that the matrix can 
be characterized by a constant viscosity. It is established 
by experiment that viscous deformation is not only 
dependent on porosity [16, 171, but also temperature 
dependent [ la] .  For normal geothermal gradients, a -1- 
10 km decrease in depth in the lithosphere leads to a 
ten-fold increase in rock viscosity. We show here that 
this increase in viscosity stabilizes one-dimensional 
waves and causes them to become effectively trapped at 
depth unless an elastic mode of deformation is acti- 
vated. The inappropriate initial condition is that there is 
a uniform background level of connected fluid-filled 
porosity throughout the rock matrix. In the context of 
melt transport, even if the fundamental difficulty of 
maintaining a pervasive melt-filled porosity at sub- 
solidus temperatures is disregarded, the models show 

that steady flow is unstable. Therefore, it is difficult to 
envisage a process that could create the initial condi- 
tions for the model and be simultaneously consistent 
with the conclusions drawn from the modelling. These 
criticisms are less relevant to compaction models 
applied to sedimentary pore fluid expulsion, since aque- 
ous fluids are thermodynamically stable at the condi- 
tions of interest and it is possible to devise realistic 
initial conditions for which compaction is insignificant 
[ l  I]. However, it is often argued that chemical [I91 or 
mechanical processes [20] lead to situations where pore 
connectivity is lost. In these situations, fluid flow 
induced by a diagenetic or metamorphic devolatilization 
reaction must propagate into a matrix with no connected 
porosity. The propagation of a fluid into a matrix with 
zero porosity is a problem that can be solved by taking 
into consideration the elastic properties of the matrix 
[21]. This fact provides additional motivation for intro- 
ducing a viscoelastic rheology in the modelling of com- 
paction-driven fluid flow. 

Our formulation of the compaction equations is math- 
ematically simple, but analytic solutions to these equa- 
tions are cumbersome and not easily understood. In this 
paper, we therefore present numerical solutions and 
graphical representations of analytic solutions designed 
to illustrate the character of, and constraints on, com- 
paction-driven fluid flow. 

2. Mathematical formulation 

The mathematical formulation employed here is for 
the Darcyian flow of a slightly compressible fluid 
through a viscoelastic matrix composed of incompressi- 
ble solid grains. This formulation consists of two equa- 
tions for two unknown functions, porosity (@) and 
effective pressure (p,, see table 1 for additional notation) 

-@p, dp' + L* = v ( ~ ( - v ~ ,  - ~ ~ g ) )  
dt, 1 - @dt, P 

(2) 

The effective pressure is p, = (I-@)(p, - p,) and the 
total pressure p,,, = p,(l-@) + pi@ = pf  + p, is assumed to 
be lithostatic such that p,,, = p,,,, = p, - p,gz; subscripts 
s, f and @ refer, respectively, to solid, fluid and porosity 
properties; V is the gradient operator, d/dt = (illat, 
+Vs . V) is the substantial (material) derivative relative 
to the solid matrix velocity; Ap is the density difference 
p, - p,, g is gravitational acceleration; k@" is the matrix 
permeability; fl, and p are the fluid compressibility and 
shear viscosity; t7/ern is the matrix bulk viscosity, for 
which 17 may be depth-dependent, and @bp+ is the pore 
compressibility. For consistency with mathematical con- 
vention, we adopt a coordinate system where the depth 
coordinate ( I )  increases upward in the direction of fluid 
flow. 
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Table 1. Common symbols and characteristic parameter values. 

Symbol Meaning Units Value 

b porosity exponent for pore compressibility 

Des fluid Deborah number [equation (8)] 

De4 matrix Deborah number [equation (8)] 
f dimensionless porosity 
fo initial amplitude of a flow obstruction 
k permeability-porosity proportionality constant 

4 e-fold length [equation (13), figure 1 I ]  
m porosity exponent for 5 
n porosity exponent for k 

P dimensionless pressure [equation ( 5 ) ]  
P * characteristic pressure 
P f fluid pressure 
Pe effective pressure 
PS solid pressure 
Ptot total pressure 
4 volumetric fluid flux 
40 background volumetric fluid flux (figure I )  
4 I initial flux beneath a flow obstruction 
Q creep activation energy [cquation ( 1  I)] 
t dimensionless time 

time 
characteristic time [equation (5)] 
temperature 
dimensionless phase velocity 
matrix velocity [equation (4)] 
fluid velocity [equation (4)] 
wave phase velocity 
horizontal distance ordinate 
depth, negative downward 

Pr fluid compressibility 
PO pore compressibility elastic constant 

6 viscous compaction length [equation (4)] m 

aspect ratio of a two-dimensional wave [equation (14)] 
wavelength 
porosity 
background porosity (figure 1) 
initial porosity shock amplitude (figure I)  
rock shear viscosity [equations ( 1  I )  and (12)l 
77 at a reference condition 
matrix bulk viscosity 

PC - Ps 
fluid density 
rock density 
fluid viscosity 

Although the  solid component  of the  matrix i s  incom- Equation (1)  i s  the  combination of equation (3) and the  
pressible, the bulk matrix is compressible because  fluid Maxwel l  volumetric strain-rate effective mean stress 
may  be expelled f rom the pore volume. Consequently, law fo r  a bulk viscoelastic rheology. Equation (2) is  the 
mass  conservation relates the divergence of the  solid combined statement o f  Darcy's law 

velocity to  the porosity production rate wn 4( v, - V , )  = y - ( V ~ f  + pfg) 
P 

(3) and  fluid conservation o f  mass.  I t  equates the  t ime ra te  
of  change of  fluid volume per unit  volume rock  to  the 
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divergence of the fluid flux and the rate of porosity pro- 
duction. In the remainder of this paper, we assume that 
any porosity present in the matrix is connected; in the 
event that this is untrue, equations (1) and (2) apply 
only to the connected porosity within the matrix. For 
simplicity, the term (1 - 4) is replaced by unity and 
solid matrix velocity in the material derivatives is 
ignored (dldt- alat). This simplification makes the for- 
mulation of equations ( 1 )  and (2) identical in Lagran- 
gian, Eulerian and barycentric reference frames [3, 4, 
221. This approach is justified by the parameter uncer- 
tainties and bv the fact that the matrix comwaction 
velocities required by continuity are typically at  least an 
order of magnitude less than the fluid velocity for con- 
ditions of interest. Despite this simplification, the diver- 
gence of the solid compaction velocity is properly 
accounted for. The present treatment differs from more 
complicated analyses of two-phase compaction equa- 
tions [3, 4, 221 in that shear force balance consideration 
is not required. The viscous limit (& = P, = 0 )  of equa- 
tions l and 2 is mathematically equivalent to (i.e. can be 
reduced to) the system of equations used in viscous 
compaction [12, 23-25]. The elastic limit ( 7  + m) is 
similar to the 'mechanical' compaction models used for 
the sedimentary basin environment and subsurface 
hydrogeology [7, 26, 271. Generalization to the plastic 
models is achieved by strong reduction in viscosity 
above a specified yield pressure. 

Natural scales for non-dimensionalization of equa- 
tions (1) and (2) are: the background porosity &; the 
viscous compaction length L* = 6; p* the pressure dif- 
ference due to buoyancy on this length scale; and the 
viscous compaction time t* (the asterisk designates the 
characteristic values used for non-dimensionalization) 

Recasting equations (1) and (2) in dimensionless form 
yields a closed system of equations that describe the 
evolution of dimensionless fluid-filled porosity f = 4 / @,, 
and effective pressure p = -p,  1 p*= (pf - plith) I p *  

where, in addition to the three dimensionless power law 
exponents n, m and b, there are three dimensionless 
parameters 

The first two parameters in this list are forms of the 
Deborah number used in viscoelastic applications [28]. 
This number is the ratio of the Maxwell relaxation-time 
to the characteristic time of the process under investi- 
gation. As defined here, De << 0 i s  the viscous limit, 
and elasticity dominates rheological response for large 
De - 1. The third parameter 17 is  the dimensionless 
matrix shear viscosity, which may depend on depth. 

2.1. Power law exponents: n,  m and b 

The power-law exponents n, m and b define the 
dependence of the matrix permeability, bulk viscosity 
and pore compressibility on porosity, respectively. 
There is a considerable variability in the literature con- 
cerning the choice of these power law exponents. It is 
common practice to set some or  all of them to zero for 
simplicity. However, setting n to zero removes an 
important non-linearity responsible for the formation of 
the porosity waves. There are strong arguments for sup- 
posing that n is near 3, a value we assume here, and not 
less than 2 [3, 221. Higher values of this exponent have 
been determined experimentally [29], which enhance 
the wave-like character of fluid flow [30]. The practice 
of setting the rheological exponents m and b to zero is 
inconsistent with the common assumption that the solid 
grains within the matrix are incompressible, which 
requires that the matrix must also become incompressi- 
ble in the limit @ -+ 0. When b is not set to zero, it is 
usually taken to be unity [26]. We arbitrarily adopt a 
value of b = !h. More complex treatments of poroelasti- 
city are possible [20], but entail considerable uncer- 
tainty. Nye [16] demonstrated both experimentally and 
theoretically that in the limit of non-interacting pores in 
a viscous rheology the exponent m is unity. In more 
complex systems m is known to vary in the range -!h to 
2 [17]. Here we explore the dependence of the solutions 
to the compaction equations for 0 I m 1 2, the lower 
limit is taken for purposes of comparison with earlier 
work. 

2.2. Methods 

Equations (6) and (7) [or equations (1) and (2)] were 
solved simultaneously by Crank-Nicolson and alternat- 
ing direction implicit finite difference schemes [31] for 
one- and two-dimensional numeric calculations, respec- 
tively. For these calculations, the surface and basal 
boundary conditions were p, = 0 and ap,/az = 0 .  
Lateral symmetry (no-flow) boundary condiiions were 
imposed for the two-dimensional numerical calcu- 
lations. Stationary solutions of equations (6) and (7) 
in a coordinate system moving with velocity V, 
were obtained by replacing partial time derivatives by 
- V,d/d~. 
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3. Initial conditions and nomenclature 

The existence of wave solutions to equations (1) and 
(2) in the limit of a viscous matrix is well documented 
[23]. The necessary conditions for these solutions are 
that: (1)  dk/d@ is a strongly increasing function of 
porosity, a condition likely to be met in most geological 
environments; and (2) the existence of an obstruction to 
compaction driven flow. Such an obstruction may be 
simply the relatively low porosity rock overlying a 
chemical source of  fluid-filled porosity, i.e. a devolatil- 
ization or melting reaction. 

We begin by considering two one-dimensional initial 
porosity distributions (figure I) in a matrix of constant 
shear viscosity that leads to the initiation of waves: (1) 
a step-like increase in porosity with depth between two 
infinite regions of constant porosity (4 ,  > 4,); and (2) a 
local, sill-like, region of elevated porosity (I$,) with a 
background porosity (&J. It is sometimes convenient to 
characterize these distributions by the associated excess 

volume, i.e. the volume of fluid-filled porosity above 
the background level Ggure I). The initial conditions 
for pressure are zero effective pressure throughout the 
porosity. 

The step-like porosity distribution (infinite excess 
volume) is relevant to problems such as the extraction of 
mantle melts in which compaction drives fluid flow 
from a relatively large region, compared to the viscous 
compaction length scale. The sill-like domain of ele- 
vated porosity (finite excess volume) is relevant to 
situations such as  might be created by a diagenetic o r  
metamorphic devolatilization reactions or localized 
melting. If the step- and sill-like porosity distributions 
propagate with unchanging form, conservation of mass 
requires that the discontinuities propagate with velocity 

41 - 4 0  v - -  
@ - 4, - I$(,. 

(9) 

More generally, it is to be expected that the original 
porosity distribution will evolve in a complex way with 

a) step-like initial porosity distribution, shock wave 

Row obstruction 

excess volume=a;, 
.................................................. 

K=qd$o -+ 

b) sill-like initial porosity distribution, solitary wave 

flow obstruction 

................................ 

excess volume 

K=qdk + V,=~d+o + 
Figure 1. Initial porosity distributions and fluid velocities for one-dimensional transient models. If the distributions propagate with 

unchanging form they are classified as a stationary shock (a), and solitary (b) waves. For the step-like distribution, the flow 
obstruction separates infinite half-spaces. Stationary shocks solutions to the compaction equations are possible for an elastic matrix 
[ l ,  351, whereas solitary solutions are possible in a viscous matrix [2, 231. 
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time. To describe this evolution we adopt the following 
nomenclature. 
- A  shock wave is a distribution that propagates con- 
necting to distinct levels of porosity; within this distri- 
bution there may be smaller wave-like structures that 
also have the character of shocks. 
- A solitary wave is an isolated distribution that propa- 
gates between two nodes at the background porosity and 
in which the fluid flux is identical to the background 
flux at the wave nodes. 
-Periodic waves are a distribution that propagates with 
nodes at a constant level above the background porosity, 
and in which the fluid flux at the wave nodes is different 
from the background value. 
If a wave propagates with unchanging form, then it is 
stationary, otherwise it is transient. In the stationary 
limit (figure l ) ,  the step-like initial porosity distribution 
propagates as a shock wave, whereas the sill-like distri- 
bution propagates as a solitary wave. In both cases, the 
velocity given by equation (9) is the phase velocity of 
the wave. For compaction-driven fluid flow, except in 
the limit of zero background porosity, the phase velocity 
is greater than the fluid velocity (q/$)  within the wave. 

4. Step-like initial porosity distribution, 
viscous shocks 

The immediate effect of a step-like flow obstruction 
in a viscous matrix (figure 2a) is to raise the fluid pres- 
sure near the obstruction (figure 2b), which results in 
negative effective pressures, pore dilation, and increas- 
ing permeability. Because the fluid flux within the 
dilated region beneath the obstruction must be less than 
in the deeper undeformed rocks Darcy's law requires 
that the fluid pressure gradient must relax toward hydro- 
static conditions within the dilated region. Pore fluid 
pressures within this region must rise until the rate of 
pore dilation exceeds the rate of fluid supply from the 
undeformed matrix. The effective pressures at the base 
of the dilated region then become positive and this 
causes the porosity to collapse Vigure 2c) .  The net result 
of pore dilation beneath the obstruction is to propagate 
the region of dilated porosity upward; while simultane- 
ously the collapse of porosity propagates information 
about the obstruction backward, against the direction of 
flow [32]. The newly formed obstruction causes the 
process to repeat at greater depth relative to the shock 
front. The effect of this process is to create a series of 
wave-like structures within a large shock. Spiegelman 
[32] showed that for porosity exponents m = 0 and n = 3 
there is no stationary solution to the compaction equa- 
tions, and that the transient solution consists of a series 
of structures with diminishing amplitude behind the 
shock front (figure 3 ) .  With time the amplitude and 
velocity of the initial shock approaches, but remains less 
than, the velocity and amplitude of a solitary wave [23, 
321. Thus, in idealized models, the waves do not sepa- 
rate from the shock and the shock is constrained to have 

relatively small amplitudes. In principle, wave detach- 
ment could occur when the fluid flux between the shock 
front and the subjacent structure drops to the value of 
the fluid flux within the obstruction, whereupon the 
shock front would propagate as a solitary wave 
(figure 26). Khodakovskii et al. [25] considered models 
in which additional mechanisms permit detachment of 
large amplitude waves. We note that heterogeneities 
within the background porosity would be adequate to 
destabilize the shock and cause detachment. 

Geological application of viscous compaction models 
to melt extraction has generally been concerned with the 
extraction of a few volume percent melt from the man- 
tle. In this context, it has been argued that shocks gene- 
rated by melting are small relative to the background 
porosity and, therefore, an ineffective mechanism for 
melt extraction [ 2 5 ] .  However, the magnitude of the 
model background porosity is subject only to an artifi- 
cial constraint, introduced to keep compaction lengths 
on a scale such that viscous compaction would produce 
geologically relevant results. There is little physical 
necessity or justification for this constraint. In the limit 
that there is no interconnected melt-filled porosity 
above a partially molten layer the magnitude of the 
shock produced by partial melting becomes infinite (i.e. 
# =  1). For small, but finite background porosity, the 
amplitude of the wave-like structures generated for 
large obstruction amplitudes appear to have no asymp- 
totic limit (figure 4). Thus, although these solutions are 
valid, they are physically unrealistic because of the 
extreme transient variation in effective pressure within 
the shock. In real systems, these variations would 
increase the importance of elastic deformation. Thus, a 
viscoelastic model for the matrix deformation is the 
simplest model that can describe the physics of fluid 
flow for the entire range of porosities realized in the 
natural environments. 

In the limit of the small background porosity (4, >> 
&), the compaction length scale must be defined from 
the properties of the matrix beneath the obstruction. 
Thus, the practice of defining compaction length scales 
on the basis of the background porosity is only valid for 
relatively low amplitude obstructions. 

5. Sill-like initial porosity distribution, 
viscous solitary and periodic waves 

The essential difference between the evolution of the 
sill- and step-like porosity distributions is that in the 
former the source of the flux is exhaustible, although 
both distributions have the same initial flux behind the 
upper flow obstruction. Thus, the fluid flux between the 
wave-like structures that develops from a sill-like distri- 
bution falls more rapidly and is not constrained to 
approach the background flux asymptotically. Conse- 
quently, solitary or periodic waves may detach from the 
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a) t-o b) f ~ 1  

Fluid wessure 

Figure 2. Schematic porosity and pressure-depth profiles illustrating the evolution and propagation of porosity waves through a low 
porosity obstruction in a viscous matrix (heavy solid curves). a. The obstruction is introduced at r = 0, effective pressures are ini- 
tially zero. b. Fluid pressure rises about the obstruction, causing pore dilation and increasing permeability. Fluid flux in this region 
must be less than in the underlying rocks; thus, the fluid pressure gradient relaxes toward hydrostatic conditions. c. Fluid overpres- 
sure grows in proportion to the depth of dilation. Once the rate of pore volume increase exceeds the rate of fluid supply, the 
underlying porosity becomes underpressured and collapses. Porosity collapse initiates a second flow obstruction. d. If the porosity 
collapses to the value of the initial obstruction, fluid fluxes into and out of the high porosity domain are comparable and the domain 
propagates, by dilation and compaction, through the obstruction as a solitary wave. Solitary wave velocities must be greater than 
the simple shock velocity [equation (9)1. The stationary solitary wave shape is such that the total amount of pore dilation is equal 
to the total amount of compaction. If the matrix properties do not vary with either depth or effective pressure, the wave is symmet- 
ric. If a small, but finite, negative effective pressure is necessary to induce plastic yielding (viscoplastic rheology, heavy dotted 
curves in b and c), porosity waves evolve in a manner analogous to the viscous case. However, in the viscoplastic matrix, the waves 
are smaller, asymmetric and propagate more rapidly. In an elastic matrix (thin dotted lines), fluid pressure rises until pore dilation 
above the obstruction becomes comparable to the rate of fluid supply. The obstruction then propagates into the overlying matrix C .  
In contrast to Rice's solution 111, the stationary shock amplitude decays to the initial amplitude of the shock because fluid must 
accumulate beneath the obstruction until the fluid pressure reaches a value [equation (16)J adequate to propagate the shock. How- 
ever, conservation of mass requires the same propagation velocity [equation (9)] for both solutions. 
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414, evolution, viscous case, step-like initial porositydistribution 
250 - 

$,/$,=2, n=3, m=l, b=0.5, De,=O, De,=O, I,=m 

200 - 

150 - - 

100 - - 

50 - - 

I 

I 0  20 30 40 50 60 70 
Dimensionless Time X 3 

Figure 3. Transient depth ( - z )  profiles showing evolution of porosity and fluid pressure anomalies (-p, = pip*) resulting from a small 
amplitude, fo= 2, step-like shock Vgure l a )  in a viscous matrix ( n  = 3, m = I, D e g =  0, b = 0.5, D e f =  0 ,  l o  = m). Dotted vertical 
lines locate the zero-baseline for the profiles as a function of time. Profiles are scaled such that a unlt d~mensionless porosity (f) 
or dimensionless pressure is identical to 4 units of dimensionless time. Spiegelman [32] demonstrated that for a small shock of 
initial amplitude f, = 2 and the rheological exponent m = 0, the transient shock front asymptotically grows to a maximum amplitude 
off = 4. The present calculation for f, = 2 and m = I, suggests an asymptotic limit of -2.6 f,. Noise at the lower boundary of the 
porosity and pressure profiles, and profiles for subsequent transient one-dimensional models, is an artifact. The noise is a conse- 
quence of the unconstrained effect of pressure gradients at the lower boundary in these calculations. The noise is cosmetic and has 
no impact on the model evolution. 

initial region of excess volume and propagate indepen- 
dently of it, provided there is a finite background flux. 

After the initial discovery of the relevance of viscous 
porosity waves to geological processes, the classifica- 
tion of porosity waves was the subject of considerable 
discussion. However, periodic wave solutions to the 
compaction equations (figures 5 and 6) were not pre- 
viously recognized. The condition for the transition 
from periodic to solitary solutions is  related to  the 
velocity of the background flux and the total excess 
volume available to form waves. Periodic solutions are 
possible for all velocities, but solitary solutions require 
large excess volumes and low velocities (figure 6). This 
is verified by transient numerical calculations in which 
the initial waves that detach from a shock are very 
nearly solitary, but the residual porosity propagates as 
periodic waves (figure 7). If the initial extent of the 
region of elevated porosity is small (-6), all the porosity 
in excess of the background porosity may be carried by 
a single solitary wave. 

Viscous waves typically develop on the length scale 
greater than, but comparable to 6 (figure 8) .  The remain- 
ing characteristics of the waves are remarkably sensitive 

to model parameters (figures 8 and 9). However, in the 
limit of large porosity waves for rn = 1, stationary solu- 
tions have essentially Gaussian porosity distributions 
[30]. This can be shown analytically given the observa- 
tion that, in the vicinity of a porosity maximum at z = 0, 
p = Apgz and therefore -Vg(d@/dz) = @Apgzlq, for which 
the analytic stationary solution is 

A potential application of this limit is in the description 
of the compaction front that defines the lithostatic- 
hydrostatic fluid pressure transition in sedimentary 
basins. This front can be characterized as  the lower half 
of a stationary porosity wave, numerical calculations 
based on this model reproduce natural porosity distribu- 
tions (figure 10). 

6. Porosity waves in a viscoplastic matrix 

A characteristic feature of viscous porosity waves is 
that the mean effective pressure within the wave is near 
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Figure 4. Transient depth (-z) profiles showing evolution of porosity and fluid pressure anomalies (-p,) for a step-like shock in a 
viscous matrix (fo = 10, n = 3, m = 1, Deb=, 0, b = 0.5, Def=  0, I,= w) with initial amplitude fp = 10. The profiles are scaled such 
that a unit dimensionless porosity (f) or dlmensionless pressure 1s identical to 50 units of dlmensionless time. The calculation 
demonstrates that the amplitude of the transient shock is essentially unlimited if the initial shock is not small (i.e. f, - I ) .  Despite 
the large amplitude of the shock front, solitary waves do not detach from the shock, however detachment might be initiated by 
heterogeneities in the background porosity. 

zero; therefore, large negative effective pressures may 
be generated in the upper portions of such waves. Rocks 
are unable to sustain significant negative effective pres- 
sures because they fail plastically under moderate ten- 
sile stress, particularly at shallow depth [S]. It can be 
argued that this consideration justifies dismissing vis- 
cous waves, which are propagated by negative effective 
pressures, as  a possible mechanism of fluid flow [I 11. 
However, the rate of propagation of plastic dilational 
deformation is limited by the rate at which viscous com- 
paction can drive fluid flow to the region where dilation 
occurs. Because there is less resistance to dilational 
deformation once plastic yielding commences, it is to be  
expected that waves have less tendency to detach from a 
shock front than in a simple viscous model. This expec- 
tation is born out by numerical calculations (figure 11). 
Excepting this feature, along with details of symmetry 
and the magnitude of effective pressure, one-dimen- 
sional porosity waves that develop in a viscoplastic 
matrix are fundamentally similar to those in the simple 
viscous case [ I  11. 

7. Influence of thermally activated creep 
on viscous waves 

It is  well established [18] that shear viscosity (7 )  has 
an exponential dependence on temperature that can be 
expressed 

where Q is the creep activation energy, q, is the viscos- 
ity at  the reference temperature To. Alternatively, the 
variation in viscosity with depth due to  the geothermal 
gradient from equation (1 1) is  

where 1, is the 'e-fold length', the length scale over 
which there is an e-fold decrease (where e is the base of 
the natural logarithm) in shear viscosity with depth in 
the lithosphere, and z,, is the depth at  which the visco- 
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Viscous case: V=5, n=3, mcl, b=0.5, De,=O, De,=O, /,ern 

Figure 5. Analytic stationary solutions ( V  = 5, n = 3,  m = 1 ,  Deq= 0,  b = 0.5, De, = 0, 1 = -J) for the porosity. pressure anomaly and 
fluid velocity distributions within solitary and periodic waves as a function of the baclground porosity ($,,,,), relative to the back- 
ground porosity necessary to obtain a solitary wave. Increasing $,,, is equivalent to reducing the excess volume Cfigrrrr I) carried 
by the waves. There is one solitary solution possible for a specified phase velocity, but there are an infinite number of periodic 
solutions. The periodic solutions are stable if either the excess volume or the obstructed fluid flux is relatively low. 

sity is qO. From equations (I 1) and (12) the e-fold 
length is 

The values of lV  for the rheologies and geothermal gra- 
dients characteristic of various regimes within the litho- 
sphere are of the order of 200-5000 m (figure 12). This 
length scale is  essentially identical to the typical vis- 
cous compaction lengths (6  - 100-10000 m) cited in the 
context of constant shear viscosity models for melt 
extraction [22, 241. Since both 6 and the viscous com- 
paction time scale t* vary as & [equation ( 5 ) ]  it fol- 
lows that constant viscosity models can only be valid on 
length scales of a few e-fold lengths and only if 6<< I,. 

The e-fold effect causes viscous porosity waves to 
become asymmetrical and slow to an essentially static 
state [ l l ,  301. Asymmetry arises because, for a given 
absolute effective pressure, the rocks at the base of the 

wave compact more rapidly than the rocks dilate at the 
wave front. The reduction in velocity is an intuitively 
clear consequence of strengthening, which must impede 
wave propagation. From one-dimensional models, 
Connolly [30] inferred that these effects would cause 
porosity waves to become sill-like as they propagated 
upward. Because one-dimensional waves are by defini- 
t ~ o n  planar, it is more convincing to demonstrate the sta- 
bility of the one-dimensional wave in a two-dimensional 
model. For such a demonstration to be successful, it suf- 
fices to show that a circular wave, the stable form for an 
infinite e-fold length rheology [12, 141, spreads laterally 
as  it rises. Accordingly, waves initiated by a sub-hori- 
zontal perturbation, such a s  might be created by a melt- 
ing front, have a strong tendency to propagate a s  hori- 
zontal one-dimensional waves. Numerical solutions to 
equations (1) and (2) show that this is true (figure 13a). 
We conclude that for geologically plausible e-fold 
length scales, thermally activated viscous creep pro- 
vides a strong stabilization of one-dimensional waves. 
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Figure 6.  Pressure-porosity phase diagram for the wave solutions shown in figure 5. The characteristic of a solitary solution is that 
the gradients dfldz and dPldz do not converge as the porosity and pressure decrease to the background levels. The trace of the sol- 
itary solution approaches ( P  = 0, f = 1 )  asymptotically, i.e. at infinite distance from the wave centre. There are no wave solutions 
outside of the region bounded by the solitary solution, solutions within the region are periodic (i.e. the trace of a solution closes 
on itself). The vectors indicate the gradients dfldz and dPldz, these vectors must be tangential to the trace of stationary solutions. 

Pressure gradients about a zero-dimensional perturba- 
tion are of comparable magnitude. Thus, if the strength 
of the matrix increases vertically on the scale of the 
compaction length, but does not vary laterally, then 
more deformation will occur in a lateral than in a verti- 
cal direction. For a two-dimensional wave, the process 
of lateral spreading is explained by the consideration 
that the lateral length scale of the waves is determined 
by the local viscous compaction length of the unper- 
turbed matrix. This compaction length increases by an 
order of magnitude if a wave propagates vertically 
- 2.31,. Thus, if a devolatilization or melting reaction 
occurs at a depth where 6 = 1, 110, i.e. where the e-fold 
effect is weak, two- or three-dimensional waves may 
nucleate from heterogeneities with a characteristic spac- 
ing of -6, but the waves must amalgamate to form a sill- 
like wave after propagating -2.31, (figure 13b). If 6 << 
IlqI the e-fold effect is weak and horizontal one-dirnen- 
sional waves are unstable as has been demonstrated by 
linear stability analysis for constant shear viscosity 
[12]. Consequently, the vertical length scale of waves 

in an upward strengthening rheology must be - I,. This 
logic implies that the aspect ratio (E) of stationary 
two- and three-dimensional waves is  [from equations (7) 
and (12)] 

where 6, is the compaction length at depth 2,. 

Equation (1  1)  is a simplification in that viscosity is 
more plausibly related to the homologous temperature 
of the rock matrix rather than the absolute temperature 
[ 5 ] .  This simplification is unimportant in the upper 
regions of the lithosphere, but with increasing depth the 
geotherm may become parallel to the mantle solidus in 
regions of asthenospheric melting. In such an environ- 
ment the homologous temperature and matrix shear vis- 
cosity would be constant, and, a t  still greater depths 
steepening of the geotherm would lead to a decrease in 
the homologous temperature with depth. It  follows that 
in this inverval, matrix shear viscosity increases with 
depth and the e-fold length must be negative. Equation 
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Figure 7. Transient depth (-z) profiles showing evolution of porosity and fluid pressure anomalies (-p,) from a sill-like initial poros- 
ity distribution in a viscous matrix Cf,= 10, n = 3 ,  m = 1 ,  D e g =  0, b = 0.5, D e f =  0, I, = -). Profiles are scaled such that a unit 
dimensionless porosity (n or dimensionless pressure is identical to a unit of dimensionless time. Initially, a large approximately 
solitary wave separates from the region of elevated porosity, by t = 10 transient periodic waves begin to propagate the residual 
excess volume. Wave velocity is proportional to amplitude 1231, so with time the solitary wave distances itself from the periodic 
wave train. 

(14), suggests the existence'of two distinct regimes in ing also induces channelled flow, a subject that we  do 
this situation. If < I l , ,  1 the stable wave forms are not explore further here. 
prolate ellipsoids with an aspect ratio that becomes infi- 
nite as a0 / 1 lV I + - 1, in which case the waves become 
tube-like channels. The channelling behaviour differs 8. Porosity shocks in the elastic limit 
from that observed in reactive transport models [15] in 
that the channels are stable and that the vertical extent 
of the channels is limited by the upward reduction of the 
viscous compaction length. An intriguing possibility 
related to this behaviour is that instabilities in a nega- 
tive 1,-rheology may develop into self-propagating 
cracks [33, 341. The second regime for a negative e-fold 
length rheology occurs when 60 > I l,, I in which case 
the aspect ratio from equation (14) is negative and there 
are no stable waves, i.e. fluid flow is dispersed. Varia- 
tion in the e-fold length with depth thus provides an 
explanation for both the concentration of asthenospheric 
melts into vertical channels and the subsequent ponding 
of these melts in sills above the asthenosphere. In this 
context it is pertinent to observe that viscoplastic yield- 

Porosity waves in an elastic matrix have received less 
attention than waves in a viscous matrix. Rice ([I], see 
also reference [35]) derived the stationary solution for 
the propagation of a stationary step-like shock into a 
flow obstruction for boundary conditions of constant 
flux and effective pressure. Conservation of mass 
requires that the shock propagates with a velocity given 
by equation (9); if the flux within the obstruction is 
small (i.e. qo << q,) ,  this velocity is approximately the 
particle velocity of the fluid beneath the obstruction 
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Figure 8. Stationary analytic solutions for the porosity, pressure anomaly and fluid velocity distributions for solitary waves ( V  = 5, 
n = 3, Deg = 0,  b = 0.5, Def = 0, l,, = -) as a function of the rheological (bulk viscosity) porosity exponent m. Increasing non-line- 
arity sharpens the transition between the wave and background porosity. Form = 1 ,  in the limit of large porosity waves. the porosity 
distribution is approximately Gaussian [equation (lo)]. 

In an elastic medium, permeability and porosity are 
functions of effective pressure. Equation (1) can thus be 
arranged to express a lower bound for the fluid pressure 
perturbation necessary to initiate the shock 

where 4, is the porosity beneath the obstruction. The 
essential difference with the viscous model is that in an 
elastic matrix fluid, pressure cannot decrease below its 
initial value if there is a constant fluid flux beneath the 
obstruction. Elastic shocks therefore cannot detach horn 
their source [ 3 5 ] .  Consequently, there are no solitary 
wave solutions of the compaction equations for an elas- 
tic matrix. 

The initiation and propagation of an elastic shock 
from a step-like porosity distribution, and the initial 
conditions discussed earlier for the viscous case, are 
illustrated in figure I .  The presence of the obstruction 
causes fluid pressure and porosity to increase and fluid 
diffuses into the obstruction (figure Ib). When the 
increase in fluid pressure approaches a critical value, 

greater than that given by equation (16), elastic defor- 
mation becomes adequate to accommodate the fluid 
flux, pressure ceases to  rise, and a stationary shock 
wave nucleates and propagates the obstruction upward 
with a velocity given by equation (9). If the initial 
porosity distribution is sill-like and fluid pressure rises 
to values for shock nucleation, the shock must change 
shape as  it propagates to  conserve the fluid mass. In this 
case, the shock is self-similar rather than stationary [35] 
and its amplitude and velocity fall asymptotically to 
those of the background porosity and fluid velocity. 
Although we have considered initial conditions of cons- 
tant (zero) effective pressure, this is not a requirement 
for shock initiation. Indeed, because elastic deformation 
is incremental, shocks can propagate by elastic dilation 
at  any effective pressure. 

9. Viscoelastic fluid-rock interaction 

Elastic behavior in compaction driven flow may arise 
from either, or both, fluid and matrix (i.e. pore) elastic 
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Figure 9. Properties of steady-state solitary porosity waves ( V  = 5, n = 3, Deq = 0, b = 0.5, De,= 0, 1 = m) as a function of the 
rheological porosity exponent in, and the excess volume carried by the waves. Increasing m potentially limits the efficiency of 
porosity waves as a transport mechanism since large values of m accelerate deformation with increasing porosity. Thus it becomes 
easier for the matrix to deform and in turn, the effective pressure gradients that drive hydraulic diffusion are reduced and the waves 
tend to grow into stagnant fluid segregations rather than propagate. Because the fluid pressure gradient diverges from the lithostatic 
gradient within porosity waves, large negative effective pressures may develop at the tip of a wave (see d). These pressures may 
induce plastic yielding. The dimensionless pressure gradient (see e) varies at the wave center varies form 0 to -1 (lithostatic to 
hydrostatic pressure gradients). The transient pressure variations (see f), which are strongest at the tail and tip of a viscous wave, 
that arise due to viscous deformation would magnify the role of elastic deformation in a viscoelastic matrix [i.e. in equation (I)]. 

compressibilities. The essential features of shock prop- 
agation in an elastic matrix are largely independent of 
fluid compressibility; this is not true in a viscoelastic 
matrix. In low temperature environments, pore com- 
pressibility may be  the dominant source of elastic defor- 
mation and this justifies neglecting fluid compressibi- 
lity. Alternatively, at high temperature, particularly in 
well-indurated rocks, fluid compressibility may dictate 
the elastic response of the system. We consider these 
extremes separately, before considering the most realis- 
tic scenario of compressible fluid and in a viscoelastic 
matrix. 

9.1. Viscoelastic porosity shocks, 
incompressible fluid 

The elastic character of a viscoelastic matrix is 
defined by the Deborah number, Deg, which varies from 
zero in the viscous limit to infinity for the elastic limit 

[equation (8)]. Taking commonly accepted parameters 
relevant to mantle melt extraction and crustal devolatil- 
ization De$ is - 10~-10-'. Much larger effective Debo- 
rah numbers are appropriate if elastoplastic yielding 
occurs, a s  is to be expected in the case of porosity waves 
propagated by negative effective pressures. A point we  
return to in the next section. 

For the step-like initial distribution, numerical solu- 
tions evolve rapidly to a stationary shock (figures 14- 
16). Thus the elastic mode of deformation appears to 
dominate the stationary solution for viscoelastic rheolo- 
gies. Within viscoelastic shocks, viscous deformation 
produces a finite number of wave-like structures with 
amplitudes that diminish away from the shock front. For 
low Deg, a sill-like porosity distribution evolves to 
produce transient shocks that mimic solitary and perio- 
dic stationary solutions. There are no solitary wave 
solutions for the flow obstruction amplitudes, porosity 
exponents, and viscous compaction length that we have 



Compaction-driven fluid flow in viscoelastic rock 

n 
Q) 

+ Gauss 

4 1. ! Pannonian Basin 

, \ I I I I I 
5 15 25 

Porosity (%) 

elastic toward the surface. Thus, essentially viscous 
shocks or  waves at depth may undergo an abrupt transi- 
tion into an elastic shock. The transition may be dra- 
matic because the relatively slow, large amplitude 
viscous waves, are transformed into low amplitude, high 
velocity, elastic shocks (figure 17). Moreover, the peri- 
odicity of the viscous waves is inherited by the elastic 
shocks with the result that flow in the elastic regime 
may be markedly episodic. Although the character of 
viscous flow is primarily one-dimensional, lateral 
porosity heterogeneities can be preserved almost inde- 
finitely. In two-dimensional models, the elastic shocks 
nucleate preferentially from these heterogeneities and 
this may cause lateral focusing of the fluid from the 

Figure 10. Comparison of the porosity-depth profile from viscous shock i n t o  a plume shaped elastic shock marls in the Pannonian Basin (heavy solid curve) with the 
empirical Athy-exponential (thin dashed curve) and Gaus- (figure 17c). Thus, transient fluid flow patterns in a vis- 
sian (thick dashed curves) distributions, and the profile coelastic matrix vary strongly both in space and time. 
obtained by solving the viscous compaction equations for an 
8 km thick sediment column with a water-filled initial ooro- 
sity of 25 % with an initial permeability of 10-17 m2 (thin 
solid curve). For the numerical calculation, m = I, n = 3, the 
matrix shear viscosity is 10" at 3 km depth, and 1, -1 krn 
[I I]. The model profile is essentially stationary 30 My after 
the onset of compaction, the shape of the profile is insensi- 
tive to sedimentation rate and initial sediment permeability. 
The Pannonian Basin porosity (data from Szalay [41] as 
cited by Van Balen and Cloetingh [27]) values have been 
lowered by 2.5 %. The increase in porosity with depth in the 
lower portion of the Pannonian Basin is attributed to over- 
pressure-induced secondary porosity. The Athy ($ = $, 

$o)") and Gaussian ($ = $,,, + ($o - $mi,) 16-"'") poro- 
sity distributions are computed for $,,, = 0.001, Go = 0.25, 
and d = 3000 m. Large amplitude porosity waves are repre- 
sented well by a Gaussian distribution in the limit of cons- 
tant shear viscosity, which provides a sensibly better fit to 
the compaction front than the Athy model. 

examined in this case. Aside from destabilizing the 
periodic and solitary wave solutions to the compaction 
equations, viscoelasticity dampens the waves, o r  wave- 
like structures in transient solutions, as compared to 
those that develop in the analogous viscous models. 

9.1.1. Thermally activated creep 
The temperature dependence of elastic parameters is 

weak in comparison to the Arrhenius dependence of vis- 
cous creep [ 5 ] .  Consequently the primary controlling 
factor (physical heterogeneity excepted) on the evolu- 
tion of deformation-propagated fluid flow through a 
matrix with a thermal gradient is the e-fold length for 
viscous deformation. If a thermal gradient exists in an 
otherwise uniform matrix, the matrix cannot be charac- 
terized by a single De4 value, and the local Deborah 
number, from equations (7 ) ,  (8) and (13), is an exponen- 
tially decreasing function of depth 

9.2. Viscoelastic porosity shocks, 
incompressible matrix: negative shocks 

Flow of a slightly compressible fluid in a viscous 
matrix is characterized by the fluid Deborah number, 
De,, which varies from zero to infinity between the 
limits of incompressible fluid flow in a viscous matrix 
and compressible flow in a rigid matrix. Elastic propa- 
gation of a shock front is impossible if De4= 0 ,  because 
there is no mechanism by which fluid compressibility 
can affect permeability. However, if the matrix porosity 
is underpressured, viscous compaction and elastic com- 
pression of the fluid act in concert and create a 'nega- 
tive' shock, where by negative we mean that porosity 
increases in the direction of flow. The stationary solu- 
tion for this shock is the antithesis of the solution for 
De4 > 0 and De,. = 0, in that shock separates a uniform 
background porosity from an overlying elevated poro- 
sity, and that the viscous wave-like structures that decay 
upward (figures 18 and 19). If De, is vanishingly small, 
this solution becomes essentially indistinguishable from 
a periodic solution consisting of solitary waves 
(figure 20),  a result obtained numerically [30]. 

The importance of the stationary solution for De4 = 0 
and D e f >  0 is that it provides a mechanism by which the 
initial porosity of a steady, non-compacting system, can 
be recovered after a perturbation. Since the stationary 
solution for De4 > 0 and De,. = 0 can propagate such a 
perturbation into the initial porosity, the result that there 
are stationary solitary porosity wave solutions for com- 
pressible fluid flow in a viscoelastic matrix (i.e. De,> 0 
and De, > 0) can be anticipated. 

Z - 2  
 elo oral= D~O~XP(*) (17) 10. The zero porosity limit, viscoelastic 

porosity waves 
where De,, is Dee at zo and l q  is assumed to be constant. 
The implication of this temperature dependence is that The most important distinction between elastic and 
the dominant mode of deformation will be increasingly viscous matrix rheologies occurs in the limit of zero 
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Figure 11. Transient depth ( -z)  profiles showing evolution of porosity and fluid pressure anomalies (i.e. -p,) for f, = 10, sill-like 
initial porosity distribution in a viscoplastic matrix (f, = 2, n = 3,  m = 1, Deg = 0. h = 0.5 ,  Def = 0, 1 = -) with plastic yielding at 
p / p* = 1. Porosity profiles are scaled such that a log unit dimensionless porosity if) corresponds to 28 units of dimensionless time, 
and 1 unit of dimensionless pressure is identical to 100 units of dimensionless time. The model demonstrates that, in contrast to 
the simple viscous case (figures 3 and 4), large negative effective pressures are not necessary to propagate shocks or solitary waves 
in a viscous matrix with plastic yielding. Plastic yielding does not otherwise change viscous wave propagation, which is fundamen- 
tally limited by the rate of viscous compaction (see also Connolly [ I  I]). 

hydraulic connectivity, an important limit for a variety 
of geologic processes. Barcilon and Richter's [23] sta- 
tionary solution for solitary waves gives vanishing 
velocity and requires infinite fluid pressure and wave 
amplitude (i.e. 4 = 1) for zero background porosity. 
Thus, there are no solitary waves in an idealized viscous 
matrix in this limit. This implies that solitary waves 
propagating through a viscous matrix with finite back- 
ground porosity would be trapped beneath a region of 
zero porosity. This process must lead to increasingly 
strong gradients in both porosity and pressure, as 
implied by Barcilon and Richter's [23] solution. 
However, transient steepening of the pressure gradient 
produces an inexorable magnification of the importance 
of the elastic deformation mode in equation ( I ) ,  raising 
the local Deborah number near the flow obstruction. In 
contrast to fluid flow in a viscous matrix, there is no 
singularity at zero porosity in Rice's [ I ]  stationary solu- 
tion for the propagation of a shock through an elastic 
matrix. Transient solutions for the development of such 
a shock are also well established [21]. The physical 
basis for these solutions is that the effective pressure 

gradient at the shock front is infinite, and thus hydraulic 
diffusion can drive fluid flow into the zero porosity 
matrix by exploiting flaws. Because of the infinite effec- 
tive pressure gradient, shock propagation is not limited 
by processes at the shock front, but rather by the rate at 
which fluid is  supplied to the front by compaction pro- 
cesses at greater depth. In this respect, the propagation 
is analogous to viscoplastic wave propagation. 

The two distinct stationary solutions obtained for fluid 
flow in a viscoelastic matrix with incompressible fluid 
and for a compressible fluid in a viscous matrix, show 
that elasticity plays different roles in equations (1) 
and (2). Fluid compressibility is not present in equa- 
tion ( 1 )  and therefore cannot influence the hydraulic 
properties of the matrix. Consequently, the primary 
effect of fluid compressibility is antithetic to viscous 
conlpaction in that it raises fluid pressure in response to 
compaction. Hence, the stationary solution for Dee = 0 
and Def > 0 in which fluid pressure varies inversely with 
porosity at the shock front (figures 18 and 19). In con- 
trast, poro-elasticity enters both equations (1) and (2), 
but in the elastic limit applicable at a shock front, equa- 



Compaction-driven fluid flow in viscoelastic rock 

Figure 12. Typical e-fold lengths, l o ,  for viscous deformation in lithospheric environments as function of depth. The e-fold length 
[equation (13)] is the length-scale over which viscosity is reduced by a factor of e with depth in the lithosphere due to the geother- 
mal gradient and the thermal activation energy of viscous deformation. All calculations are for a surface temperature of 273 K and 
constant geothermal gradients. For sedimentary basins, 1 is for a rheology dominated by pressure solution creep of quartz (Q = 20- 
70 k~.mol-' [42]), and a geothermal gradient of 50 K.kmT' extrapolated to a depth of 10 km. For continental crust, I ,  is for power- 
law creep of quartzites (Q = 223 k~.mol- '  2431) and geotherms of 15 and 30 K.krn-' extrapolated to a maximum temperature of 
1273 K. For the earth's mantle, I ,  is for power-law creep of olivine (Q = 540 kJmol-I [IS])  and geotherms of 6.5 and 13 ~ . k m - '  
extrapolated to a maximum temperature of 1573 K.  

tion (1) requires that porosity is proportional to fluid 
pressure (figures 15 and 16). These relationships suggest 
that for the general case of De, > 0 and DeQ > 0, the 
possible stationary solutions must depend on the ratio 
De, lDe4, such that there is a transition from positive to 
negative shocks with increasing values of this ratio. The 
solution at this transition must be a solitary viscoelastic 
wave, but because this solution occurs for a unique value 
of Def /Dee it is of little interest. The transition is, how- 
ever, of much greater significance in the limit of zero 
porosity because a negative stationary shock cannot exist 
in this limit. It follows that if solutions exist they must 
permit propagation of  a solitary porosity wave through a 
matrix with no preexisting hydraulic connectivity. We 
obtain two stationary solutions for fluid flow in a zero- 
porosity viscoelastic matrix that supports this logic. For 
an incompressible fluid (Def  lDeQ = O), the stationary 
solution is a shock that may have wave-like structures 

developed behind a step-like front (figure 21). For a 
relatively compressible fluid (Def  lDeg = 2 )  the statio- 
nary solution is an asymmetric solitary porosity wave 
(figure 22). In contrast, to simple viscous solutions, 
which are solitary waves in both porosity and pressure, 
the pressure wave in this case is a negative shock. Thus, 
for finite background porosity the stationary solutions to 
the compaction equations are positive or negative 
shocks, whereas for zero porosity the solutions are either 
positive shocks, or a solitary porosity wave. The length 
scale for waves in the former case may be influenced 
by the background porosity. Thus, for waves produced 
by small ($, - 4,,) and large ($, >> Q0) flow obstructions, 
the appropriate length scale varies, respectively, between 
the initial viscous compaction length above and below 
the flow obstruction. In either case, the compaction 
length may be influenced, if not determined by the 
e-fold effect, such that the waves may have sill- or 
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a) Spherical perturbation b) Sinusoidal perturbation 

Figure 13. Transient two-dimensional porosity waves in an upward strengthening ( I ,  > 0) viscous matrix and slightly compressible 
fluid (De,= 3.8.10-~). For both examples the local viscous compaction length, 8, in the unperturbed matrix is 0.11, at the average 
depth of the initial perturbation. a. Waves (at t = 22.5 r*) initiated by a circular (sill-like) perturbation to the porosity with #, I 
&, = 10 and a radius of I,,! 2 centered at (xll,= 0, zll, = -1 1). b. Waves (at t = 0.5 t*) initiated by a sinusoidal (step-like) front, the 
trace of which is visible In the lower portion of the dlagram, bounding a region of elevated initial porosity = 10) at depth. 
Because the perturbations are placed at  a depth at where 6 < I,, the stable wave shapes are initially spherical as would be the case 
in a matrix of constant viscosity. As the waves propagate upward the local compaction length becomes comparable to I, and the 
anisotropy of the matrix begins to influence the wave shapes. For the spherical perturbation, this causes the wave to flatten to an 
oblate ellipsoid with an aspect ratio that is an exponential function bf depth [equation (14)l. The initial wave leaves a region of low, 
porosity in its wake; this lowers the local compaction length and therefore reduces the importance of the e-fold effect for subsequent 
waves. For the sinusoidal perturbation lateral spreading stabilizes a one-dimensional sill-like wave from the spherical waves 
generated at  the perturbation after propagation of -21 . These results imply that if 6 2 I,, fluid flow occurs by horizontal waves 
unless there are horizontal heterogeneities on a lateral &stance scale substantially greater than the local viscous compaction length. 
Upward strengthening results in an exponential increase in the compaction time-scale with decreasing depth [equations (8) 
and (13)] ,  which results in progressive slowing of the waves. If the e-fold effect is reversed (In < O), the dike-like waves are stabi- 
lized. 

dike-like geometries depending on  the thermal environ- the  bulk modulus  ( l /P@) fo r  indurated rocks in  compres- 
ment. sion are  -lo9 Pa [ 5 ] ,  large values of  De, imply extra- 

ordinary values of 6, and therefore that the  length scale  
of  stationary viscoelastic waves  discussed previously i s  

1l.Viscoelastoplastic matrix: large Dee implausibly large (-1000 km). Th i s  problem is  resolved - - 
if the importance o f  plastic yielding i s  recognized, since 

T h e  matrix Deborah number  i s  essentially a function the  tangential  bulk modulus  of an elastoplastic rock in  
of  6. and Po [equation (8)]. A s  characteristic values of  tension, the modulus relevant fo r  wave propagation, 
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Figure 14. Transient depth ( -2 )  profiles showing evolution of porosity and fluid pressure anomalies (-p,) for a sill-like initial porosity 
distribution in a viscoelastic matrix with an incompressible fluid (fi, = 10, n = 3,  m = 1, De - 0, b = 0.5, De,= 0, 1 = m). Profiles 0 - 
are scaled such that a unit dimensionless porosity Cf) or dimensionless pressure is identical to 200 units of dimensio;less time. The 
transient solution anticipates the stationary wave solution for a viscoelastic matrix, which is a shock connecting to distinct levels 
of porosity. The wave-like structures developed within the shock reflect the viscous deformation mode of the matrix. In contrast to 
the viscous case (figure 4), the viscoelastic shock does not grow indefinitely with time and therefore it must propagate with a 
velocity given by equation (9), which is greater than the velocity of the viscous shock. 

varies from the value of the modulus in compression to 
infinity for ideal tensile failure [36]. In principle, incor- 
poration of elastoplasticity requires Deborah numbers 
corresponding to the two moduli. However, in geolo- 
gical environments where viscous deformation is  signi- 
ficant, elastoplastic deformation of the matrix is only 
important for the propagation of a wave front, in which 
case the bulk modulus in tension is appropriate. Thus 
viscoelastoplasticity does not fundamentally alter the 
character of wave propagation from the viscoelastic 
case, but it does increase the values of the Deg appro- 
priate for natural processes, thereby reducing the length 
scale of the waves. The same argument cannot be deve- 
loped for propagation of the tail of a travelling wave in 
a viscoelastic matrix because the tail is propagated by 
compression and controlled largely by Def.  Thus, the 
propagation of porosity waves in natural viscoelasto- 
plastic environments can be  described as a special case 
of viscoelasticity characterized by Deg >> Def.  Waves 
that develop in this case are highly asymmetric and tend 

toward the limit represented by flow of an incompressi- 
ble fluid in a viscoelastic matrix (figure 21). 

12. Summary and discussion 

Porosity waves are a mechanism by which fluid flow 
can be accomplished at  substantially different rates than 
predicted by classical Darcyian models. The essential 
conditions for the initiation of waves is that permeabi- 
lity is an increasing function of porosity. Under these 
conditions an obstruction to compaction driven flow can 
sharpen and propagate as  a shock. Disregarding dissipa- 
tive effects that may arise from pre-existing spatial 
variation in the matrix properties, the shock may evolve 
to a stationary state, in which case the shock propagates 
with a constant velocity that is less than or equal to  the 
Darcyian velocity of the fluid behind the shock. Alter- 
natively, the shock may either slow and compress or 
become increasingly attenuated and decompose into 
waves with phase velocities that are greater than the ini- 
tial velocity of the fluid. The former case is a potential 
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Figure 15. Analytic stationary solution for a shock developed by flow of an incompressible fluid in a viscoelastic matrix ( V  = 5, n = 3,  
Dee= 0.01, b = 0.5, D e f =  0, l q =  m). Stationary shock solutions are possible in an elastic matrix, but are unknown for the viscous 
case. The solution here suggests that solitary waves are not possible for flow of an incompressible fluid in a matrix with finite 
elastic character. 

mechanism of forming fluid compartments during sedi- 
ment compaction, whereas the latter is  of interest in the 
context of melt extraction. The geological literature on 
this subject has been largely concerned with melt 
extraction, and in particular, the exploration of a viscous 
model of compaction in which the matrix viscosity is 
constant. Such a model is useful for understanding some 
features of compaction, but it is inconsistent with both 
theoretical and experimental knowledge of natural rheo- 
logy. Here we have developed a more complete model 
that eliminates many of these inconsistencies. Our 
model takes into account the dependence of bulk visco- 
sity on temperature and porosity, as  well as the exis- 
tence of elastic and plastic modes of deformation. In 
general, plastic deformation can be treated as a special 
case of elastic o r  viscous deformation. The exception to 
this generality is the limit ideal plasticity at zero effec- 
tive pressure, in which case wave propagation is impos- 
sible. 

12.1 Wave classification 

The stationary solutions to  the compaction equations 
dictate the transient evolution of shocks that develop in 
response to a flow obstruction. For pure viscous and 
viscoplastic limiting behavior, we find both periodic and 
solitary wave stationary solutions. The transition 
between the solutions depends on the magnitude of the 
excess volume carried by the wave and the Darcyian 
velocity of the background fluid flux. Periodic solutions 
are possible for all velocities, whereas solitary solutions 
require large volumes and low velocities. In a viscous 
matrix with vanishing hydraulic connectivity, the pres- 
sure required to propagate the waves with vanishingly 
small velocities becomes infinite. The application of 
pure viscous rheological models to problems concerning 
the extraction of mantle melts is therefore questionable. 
Dilational deformation in a viscous matrix, the mecha- 
nism of wave propagation, requires negative effective 
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Figure 16. Pressure-porosity phase diagram for the stationary viscoelastic shock solution shown i n  figure 15. The spiral trace of the 
solution shows that the effect of elasticity is to dampen the periodic and solitary solutions possible in a viscous matrix (figure 6 ) .  
Because the trace begins in a clockwise direction from the background porosity the wave-like structures within the shock converge 
to the elevated porosity beneath the shock front. 

pressures that may be unsustainable because of plastic 
yielding (e.g. hydrofracture). However, the essential 
features of wave propagation in a viscoplastic matrix are 
unchanged from a simple viscous model because wave 
propagation becomes limited by the rate at  which vis- 
cous compaction drives fluid to the uppermost region of 
a wave. In an elastic matrix, there are no stationary 
wave solutions to the compaction equations, but there 
are stationary solutions for porosity shocks that propa- 
gate with a velocity that is less than or equal to the 
velocity of the fluid behind the shock [ I .  351. In contrast 
to viscous or  viscoplastic waves, elastic shocks do not 
require negative effective pressures for propagation and 
can propagate into a matrix with no connected porosity. 
The latter property is requisite for relevance to geolo- 
gical processes, and suggests that a viscoelastic model 
rheology has a wide range of potential geological appli- 
cations. Flow of a slightly compressible fluid in a visco- 
elastic rheology is characterized by two dimensionless 
parameters, in addition to those conventionally used to 
describe compaction driven flow in a viscous matrix: 

(1)  De,, the fluid Deborah number, which varies from 
zero to infinity between the limits of incompressible 
fluid flow in a viscous matrix and compressible flow in 
a rigid matrix; and (2) the matrix Deborah number, Deg, 
which varies from zero to infinity between viscous and 
elastic limiting behavior. Stationary solutions for visco- 
elastic rheologies and an incompressible fluid consist of 
a shock front similar to a pure elastic shock with one or 
more wave-like structures of diminishing amplitude 
developed behind the front. The  most interesting, and 
geologically significant. stationary solutions are for 
flow of a slightly compressible fluid in a viscoelastic 
matrix with no connected porosity. The solutions in this 
case are in general shocks, but a solitary porosity wave 
solution is also possible. For a matrix with significant 
viscous character, viscoelastic shock solutions consist 
of a step-like front that rises from the background 
porosity, $,,, with one or more large amplitude wave-like 
structures behind the front. The  wave-like structures 
decay to a new level of porosity at @, > Go, which may 
be orders of magnitude less than the maximum ampli- 
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a) Initial surge b) Quasi-steady regime c) Surge nucleation d) Second surge 

Figure 17. Transient porosity waves in an upward strengthening (I > 0) viscoelastic matrix (characterized by the local values 
6 = 1,14, D e o z  0.017. De,= 3.8.10-~ at z = 20 lV,  with m = 1, n = 1 and b = 1). The waves are initiated by a sill-like horizontal 
region with dimensionless porosity f = 20 and a vertical extent of I, 1 4, two-dimensional instability is induced by raising the 
porosity in this region by 20 8 for x = 0 - 1 14. a. t = 0.001, the initial porosity distribution is largely intact, but an elastic pressure 
surge has propagated 101, from the elevate8 domain of porosity. b. r = 0.734, in the upper half of the model region, the porosity 
has formed a smooth shock-like structure, characteristic of elastic deformation, that continuously drains the fluid from the initial 
perturbation. Below the perturbation, viscous deformation has generated essentially one-dimensional viscous wave-like structures. 
A relict of the original lateral heterogeneity is preserved as a region of low porosity at x = 0. Because this region has lower pore 
compressibility, it serves as a point of nucleation for the pressure surge (see c) ( t  = 0.7771 that occurs when a viscous wave increases 
the rate of fluid flow into the elastic region. The viscoelastic character of the surge is manifest by fainter wave-like structures 
developed within it. The surge reaches the surface by t = 0.778 (see d), and the fluid distribution is restored to a condition similar 
to that in b at t = 0.820. The model illustrates the extreme variation in time scales of fluid flow due to the e-fold effect. To ut the W dimensionless numbers in perspective, taking plausible parameters for a metamorphic environment (lq = 1 km, 77, = 10 Pa.s, 
k = 10-22m2, p = Pa.s, Ap = 2000 kg.rn-" and do= 0.1 %), the surge velocities are -0.4 m.y-', whereas the viscous dominated 
wave propagation at depth occurs at -4.10-~ m.y.'. Moreover, after the initial pressure surge, conditions in the 'upper crust' remain 
approximately steady for -4.10~ y before the nucleation of the second surge. The system then recovers to a state similar to that 
illustrated in b after 2 . 1 0 ~  y. The colour-scales are chosen so that blue corresponds to f = 0.1, and red corresponds to the maximum 
porosity in each diagram: f,,, = 42 (see u) ,  f,,, = 4.5 (see b), f,,, = 72 (see c), and f,,, = 50 (see d). 

tude of the shock structures. In this respect, the shocks 
may resemble viscous solitary waves. The shock tip is 
propagated by elastic deformation, and propagation is 
limited by the rate at which viscous compaction drives 
fluid to the shock front. 

12.2. Zero porosity limit 

In compaction models of melt extraction it has been 
generally assumed that the mantle rocks through which 
melt migrates have a finite viscous compaction length. 
This assumption can only be justified by tortuous logic, 
because it implies that there is a melt-filled porosity in 
the mantle prior to melt extraction. If this assumption is 
discarded, and mantle melting is presumed to occur in 

such a way as to create an interconnected melt-filled 
porosity bounded by rocks with no melt, i.e. zero poro- 
sity, then viscous compaction within the melt-filled 
region will generate strong variations in pressure near 
the impermeable barrier. These variations raise the local 
matrix Deborah number, so  that despite low Dee values 
characteristic of the mantle, the deformation at the melt 
front is essentially elastic in character. The melt is then 
transported into the zero-porosity matrix by an elastic 
shock, which may be followed by a large wave-like 
structure. If the melt is relatively incompressible (Def < 
Dee), the shock must remain attached to the source 
rocks. If a process such as freezing causes detachment 
of the shock, the wave will decay leaving a trail of melt 
in its wake. In contrast, if the melt is relatively com- 
pressible, the wave can detach from its source without 
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Figure 18. Analytic stationary solution for a 'negative' shock developed by flow of a compressible fluid in a viscous matrix 
( V = - 5  , n = 3, Dee= 0, b = 0.5, De,= 0.01, 1,= m). The stationary shock solution for this case is peculiar in that porosity changes 
from the background level to establish a new elevated level of porosity above the shock. This suggests that fluid compressibility 
can act to damp the wave-like structures that form behind a shock in a viscoelastic matrix and restore the porosity to the background 
level. The shock propagates downward, against the direction of fluid flow. 

decaying. A similar process can be envisioned for the 
transport of metamorphic o r  diagenetic fluids through 
rocks in which an interconnected porosity is texturally 
unstable. There has been much discussion of the limited 
capacity of porosity waves as a mechanism for trans- 
porting geochemical signatures. The nature of this limi- 
tation is a consequence of the fallacious assumption that 
geologic fluid transport invariably occurs in the pre- 
sence of a background fluid flux, which implies that the 
fluid within the waves must be diluted continuously 
with propagation. This is not the case for wave propaga- 
tion in a matrix with no initial hydraulic connectivity, 
since the wave and fluid travel with the same velocity. 
Nonetheless, the chemical signature of the fluid may 
evolve by fluid-rock interaction or  through dilution 
with fluids trapped in isolated pores within the rock 
matrix. In transient systems, propagation of a shock 
wave through a zero porosity matrix may leave a resi- 
dual porosity in its wake that decays asymptotically 

with time. Provided chemical processes such as  crystal- 
lization, hydration or textural equilibration d o  not 
destroy the connectivity of this residual porosity, sub- 
sequent waves propagate in an environment with a finite 
background flux and porosity. 

12.3. The e-fold effect 

For typical geotherms, rock viscosities increase 
toward the surface by a factor of e ,  the natural log base, 
on a length scale 1, - 1-5 krn, a scale comparable to the 
compaction lengths inferred in earlier studies of viscous 
compaction. Thus the local Deborah number, viscous 
compaction length and compaction time scale increase 
by an order of magnitude as a wave propagates - 2.3 Zq. 
This implies that the vertical length scale for  compac- 
tion is only the viscous compaction length if this length 
is less than I,, otherwise the vertical length scale is I,. 
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Figure 19. Pressure-porosity phase diagram for the stationary shock solution Cfigure 18) for flow of a compressible fluid in a viscous 
matrix. The spiral trace of the solution shows that the effect of fluid compressibility is to dampen the periodic and solitary solutions 
possible in a viscous matrix (figure 6) .  Because the trace begins in a counterclockwise direction from the shock front at f = 1 and 
p = 0, the wave-like structures within the shock decay to an elevated porosity above the shock front. 

In this configuration, the horizontal length scale must be 
the local viscous compaction length of the unperturbed 
matrix. This length scale is important because it deter- 
mines the scale on which lateral heterogeneities in com- 
paction driven flow regimes can be maintained. For 
normal geothermal gradients this scale increases expo- 
nentially toward the surface, which suggests that lateral 
flow may occur on much greater length scales than 
inferred from simple models of viscous compaction. 

The significance of the increase in the local Deborah 
number with depth is that there can be a rapid transition 
in the dominant mode of wave propagation. Thus, a 
metamorphic reaction may generate a sill-like viscous 
wave that initially propagates with a velocity on the 
order of -1 km.My-' [30]. The fluid pressure within the 
wave will rise as it propagates into the less VISCOUS 

region of the crust. The increase in fluid pressure may 
then initiate a localized fluid pressure surge propagated 
by elastic deformation. Surge velocities three orders of 
magnitude faster than viscous wave velocities are feasi- 
ble [ I ] .  Such surges are a potential mechanism for 

breaching the lithostatic-hydrostatic fluid pressure tran- 
sition [I I ]  and generating seismicity [ I ] .  Factors that 
mitigate against transient fluid pressure surges are the 
relatively large effective pressures required to initiate 
surges, an increase in permeability surfaceward, and 
plastic yielding. Variable viscosity has two profound 
consequences for the nature of wave propagation in the 
viscous limit, Dee<< 1. (1) Viscous waves slow as they 
propagate and may become effectively stationary on a 
geologic time scale, an effect that may explain porosity- 
depth profiles and fluid compartmentalization in sedi- 
mentary basins. (2) A zero-dimensional perturbation 
forms oblate ellipsoidal waves, for which the aspect 
ratio, -1 + 6/1,,, increases exponentially toward the sur- 
face. Thus a subhorizontal fluid source, such as  a melt- 
ing or devolatilization reaction, will create sill-like one- 
dimensional waves if 1, 5 6. Local heterogeneities o r  
thermal anomalies such as  those that might be created 
by secondary convective overturn in the lithosphere or 
local heat advection by the fluid, can result in a rheolo- 
gically upward weakening environment (1,< 0). In these 
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Viscoelastic case: V=-5, n=3, m=l, b=0.5, De,=O, 0e,=106, I,=m 

Figure 20. Analytic stationary solution for a shock developed by flow of a fluid with vanishing compressibility in a viscous matrix 
( V  = 5, n = 3, Dee = 0,  b = 0.5,  D e f =  lo", 1, = m). The solution is a 'negative' shock (figure 19), but it is sensibly indistinguisable 
from a train of perlodic solitary waves [30]. 

environments, prolate ellipsoidal waves or  vertical 
fluid-filled channels would initiate from instabilities. 
These features may be the nuclei for self-propagating 
melt-filled cracks [33]. In this respect, the e-fold effect 
is remarkably similar to the effect of reactive transport 
which has been shown to be a potential mechanism for 
forming fluid channels [ I  51. 

13. Conclusion 

We have ignored the roles of power-law rheologies 
and chemical source terms for porosity and fluid. These 
complications influence wave shape and the shock evo- 
lution, but we d o  not expect they would fundamentally 
alter our conclusions. The most important of these is 
that fluid flow in the viscous regions of the earth's litho- 
sphere can be accomplished by self-propagating, iso- 
lated domains of fluid-filled porosity. It is particularly 
satisfying that it is only possible to reach this conclu- 
sion by employing a realistic rheological model. The 
length scale and shape of these porous domains is deter- 

mined by the e-fold length, /,, - 0.2-5 km. The ampli- 
tude and velocity of these domains is likely to be highly 
variable, but is ultimately constrained by the considera- 
tion that fluid expulsion must approximately balance 
fluid production. We have concerned ourselves with 
understanding the fundamental aspects of porosity 
waves, rather than parameterization and applications of 
our model. Nonetheless, our results are of immediate 
relevance to a broad range of geological problems. 
While it is possible to dispute the origin of fluid com- 
partments in sedimentary basins [37], the compartments 
are indisputable evidence for the existence of porosity 
waves in natural environments. Viscoplastic compac- 
tion-driven flow models not only reproduce such fea- 
tures [ l l ] ,  but also can explain the observations that in 
sedimentary basins: porosity varies more strongly with 
depth [i.e. equation ( lo ) ]  than predicted by empirical 
models such as  the Athy function [38], and that fluid 
compartments remain stationary on a geological time- 
scale. In metamorphic environments, it has been 
inferred that fluid flow through rocks in which an inter- 
connected fluid phase is texturally unstable occurs by 
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Figure 21. Analytic stationary solution for a shock developed by flow of an incompressible fluid (i.e. De,= 0 )  in a viscoelastic matrix 
( V  = 1, n = 3, De - 0 1, b = 0.5, De,= 0, I,= M) in the limit of zero porosity. The shock front is propagated by elastic deformation, 
the large wave-li$estkcture behind the front 1s formed primarily by viscous deformation. Propagation is essentially limited by the 
rate at which viscous compaction drives fluid to the shock front. Because the background porosity is zero, the scaling given in 
equations (5) and (8) is no longer appropriate. To circumvent this problem, we scale shock phase velocity relative to a porosity @*, 
and define the compaction length accordingly. Similar shocks solutions are obtained for finite background porosity with the same 
rheological model. Discounting chemical effects, waves propagating through a zero-porosity matrix would propagate the geoche- 
mical signature of the fluid source region indefinitely. 

the propagation of microcracks [39]. Viscoelastic poros- 
ity waves generated by metamorphic devolatilization are 
a mechanism by which this type of fluid flow could be 
sustained. These waves and the viscoelastic transition 
resulting from the e-fold effect are a potential source of 
the fluid pressure surges hypothesized by Rice [ I ]  as a 
trigger for seismicity. The e-fold effect on fluid flow in 
a deformable matrix may be the key to the solution of 
two enigmatic problems, subhorizontal seismic reflec- 
tors [40] and the initiation of self-propagating melt o r  
fluid-filled cracks [33, 341. Seismic reflectors may rep- 
resent subhorizontal accumulations of fluid resulting 
from a positive (i.e., normal) lq-rheology, whereas the 
critical pressures required to initiate self-propagating 
fluid-filled cracks could be achieved within vertical 
fluid accumulations that are stabilized by a negative lq- 
rheology. While we d o  not dismiss the potential impor- 

tance of reactive transport in melt migration [15], we 
note that rheological models are better constrained and 
capable of reproducing the same phenomena. Regard- 
less of the processes responsible for channelling perva- 
sive asthenospheric melts, the e-fold effect is a simple 
mechanism that would explain the collection of chan- 
nelled melt into sill-like features in the overlying litho- 
sphere. It can be argued that the Deborah numbers 
characteristic of mantle environments are too low for 
elastic deformation to be a significant component of 
deformation propagated fluid flow, as  we have advo- 
cated here. In defense of our thesis, we emphasize that 
the elastic modulus for porosity wave propagation is the 
tangential bulk modulus in tension. As rocks have van- 
ishing cohesive strength at  negative effective pressure, 
this modulus must also vanish under the conditions for 
viscous wave propagation. Therefore, the local Deborah 
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Figure 22. Analytic stationary solution for a shock developed by flow of a compressible fluid in a viscoelastic matrix ( V  = 5, n = 3, 
Dee = 0.1, b = 0.5, Def = 0.2, 1 ,  = -) in the limit of zero porosity. Scaling as in figure 21. Although the porosity wave appears to 
be a solitary wave, the pressure-porosity phase diagram shows that it is indeed a shock. The shape of the shock tip and tail are 
determined, respectively, by Deg and De,, with small Deborah numbers producing to more diffuse structures. Since the effective 
De, is inversely related to the tangential bulk modulus of the matrix in extension, which is potentially infinite, we expect that sharp 
shock fronts would develop in natural environments. In contrast, the effective Def is related to the fluid compressibility and is likely 
to be <<Dee Therefore, if such waves exist in nature, regardless of whether they are shocks or solitary waves, they are likely to 
have long, unstable tails. 

number relevant for porosity wave propagation is essen- 
tially unbounded, even in high temperature environ- 
ments such as the Earth's mantle. 

Acknowledgements 

We thank Jean-Pierre Burg for his editorial skill and 
almost unlimited patience, and Alexei Poliakov and 
Steve Miller for critical reviews. This work was under- 
taken as  part of ETH-Forschungsprojekt 0-20-885-94. 

14. Epilogue: flow channeling 
in a two-dimensional viscoplastic matrix 

One-dimensional fluid flow in a viscoplastic matrix 
with either finite yield strength, o r  a finite but small vis- 
cosity for effective pressures exceeding a nominal yield 

strength, is similar with respect to  time and length 
scales of fluid flow in a viscous matrix [ l l ] .  However, 
in contrast to the viscous case, one-dimensional visco- 
plastic porosity waves are not stabilized by an upward 
strengthening viscous rheology in two or three spatial 
dimensions, but rather decompose into vertically elon- 
gated waves or channels. The reason for this destabili- 
zation is that plastic yielding counteracts the e-fold 
effect in an upward strengthening rheology by weaken- 
ing the matrix in the uppermost portion of a porosity 
wave and thus effectively eliminates the e-fold effect. If 
the variation in strength at  the yield surface is large, as 
is normally the case for geological materials, then at the 
top of a wave small variations in the pieziometric fluid 
pressure gradient due to  the gravitational field are suffi- 
cient to cause dilational deformation to propagate more 
rapidly vertically than laterally. The aspect ratio of two- 
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Figure 23. Transient two-dimensional porosity waves generated from a sill-like high porosity layer in a matrix with constant shear 
viscosity and plastic yielding at zero effective pressure. The horizontal scale is exaggerated by roughly a factor of 50. Plastic yield- 
ing is assumed to result in an effective shear viscosity three orders of magnitude less than the shear viscosity at positive effective 
pressure (i.e. q ,,,d/q = 0.001). a. The initial porosity distribution consists of a high porosity sill-like layer bounded by regions of 
low porosity.   he average initial porosity in the sill-like layer is an order of magnitude greater than the background porosity. One- 
dimensional fluid flow is destabilized by 50 % white noise in the initial porosity values. b. Initial waves develop with an aspect 
ratio of =300, a vertical length scale and horizontal spacing comparable to the viscous compaction length and relatively large 
amplitudes ($,,,l$o > 20). c. Porosity waves formed later in the compaction process exploit the partially compacted channels left 
in the wake of earlier waves. d. This process results in the formation of a continuous channel. e. The dynamics of the fluid supply 
determine whether flow occurs through pre-existing or new channels. Numerical models in which yield strength increases upward 
produce similar results except that the channels spread laterally to form sill-like porosity waves toward the surface. 

and three-dimensional waves is determined by the  man-  ing, wave aspect ratios (widthlheight) scale a s  -pyield/p* 
ner in  which plasticity manifests itself i n  the rheological fo r  yield pressures of  the order  of ,  o r  less than, p*. 
behavior of  the  matrix.  In  the l imit  o f  ideal plastic yield- Alternatively, if the matrix has  a finite shear  viscosity, 
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qyield, at effective pressures below the  yield pressure, 
wave aspect ratios vary as qyieldlq. These  relationships 
imply that plasticity provides an  efficient mechanism 
fo r  channeling fluids (figure 23). F rom dimensional 
considerations,  the spacing o f  the channels o r  waves in 
a viscoplastic matrix must  occur  with a horizontal spac- 
ing  of  -6. Likewise,  the  vertical length scale  of  channels 
o r  waves is -6 if 6 << ( l J ,  and IlqI otherwise.  In  contrast 
to the e-fold effect in an  upward weakening matrix, 
where  wave aspect ratios increase with upward propaga- 
tion limiting the vertical extent of any channelled flow 
regime, there is  n o  fundamental dependence o f  aspect 
ratio on depth.  More  generally, it i s  t o  b e  expected that 
the nature of  plastic yielding, and therefore the charac- 
ter of  compaction driven fluid flow, will vary with 
depth.  For example,  the transition f rom channelled 
asthenospheric melt  f low into sill-like horizontal poro- 
sity waves can be  induced in numerical calculations if 
yield strength and matrix shear viscosity increase 
upward. This  transition differs f rom the  transition 
resulting f rom a change in the sign of  the  e-fold length 
in that the transformation f rom dike- to sill-like geome- 
try occurs without an  intermediate stage in  which the 
waves are  spheroidal.  As porosity waves have radial 
symmetry in the absence of  far-field deviatoric stresses, 
the  term dike is  used somewhat loosely here,  however 
true three-dimensional d ike  like features could b e  gene- 
rated with numerical models that incorporate such stress 
fields. 
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Erratum for Connolly and Podladchikov, Geodinamica Acta, 11:55-84, 1998:

 (z-z )/l0

Figures 1 and 12 should be replaced by the versions appended here.

Eq 12 last factor should read rather than -(z-z )/lh 0 h
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flow obstruction
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b) sill-like initial porosity distribution, solitary wave

flow obstruction
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