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5Abstract Metamorphic devolatilization generates fluids at, or near, lithostatic

6pressure. These fluids are ultimately expelled by compaction. It is doubtful that

7fluid generation and compaction operate on the same time scale at low metamorphic

8grade, even in rocks that are deforming by ductile mechanisms in response to

9tectonic stress. However, thermally-activated viscous compaction may dominate

10fluid flow patterns at moderate to high metamorphic grades. Compaction-driven

11fluid flow organizes into self-propagating domains of fluid-filled porosity that

12correspond to steady-state wave solutions of the governing equations. The effective

13rheology for compaction processes in heterogeneous rocks is dictated by the

14weakest lithology. Geological compaction literature invariably assumes linear

15viscous mechanisms; but lower crustal rocks may well be characterized by non-

16linear (power-law) viscous mechanisms. The steady-state solutions and scales

17derived here are general with respect to the dependence of the viscous rheology

18on effective pressure. These solutions are exploited to predict the geometry and

19properties of the waves as a function of rock rheology and the rate of metamorphic

20fluid production. In the viscous limit, wavelength is controlled by a hydrodynamic

21length scale d, which varies inversely with temperature, and/or the rheological

22length scale for thermal activation of viscous deformation lA, which is on the order

23of a kilometer. At high temperature, such that d < lA, waves are spherical. With

24falling temperature, as d ! lA, waves flatten to sill-like structures. If the fluid

25overpressures associated with viscous wave propagation reach the conditions for

26plastic failure, then compaction induces channelized fluid flow. The channeling is

27caused by vertically elongated porosity waves that nucleate with characteristic

28spacing d. Because d increases with falling temperature, this mechanism is

29amplified towards the surface. Porosity wave passage is associated with pressure
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30 anomalies that generate an oscillatory lateral component to the fluid flux that is

31 comparable to the vertical component. As the vertical component may be orders of

32 magnitude greater than time-averaged metamorphic fluxes, porosity waves are a

33 potentially important agent for metasomatism. The time and spatial scales of these

34 mechanisms depend on the initial state that is perturbed by the metamorphic

35 process. Average fluxes place an upper limit on the spatial scale and a lower limit

36 on the time scale, but the scales are otherwise unbounded. Thus, inversion of natural

37 fluid flow patterns offers the greatest hope for constraining the compaction scales.

38 Porosity waves are a self-localizing mechanism for deformation and fluid flow. In

39 nature these mechanisms are superimposed on patterns induced by far-field stress

40 and pre-existing heterogeneities.

41 14.1 Introduction

42 The volume change associated with isobaric metamorphic devolatilization is usu-

43 ally positive, consequently devolatilization has a tendency to generate high pressure

44 pore fluids. This generality has led to the notion that high fluid pressures are the

45 ultimate cause of metamorphic fluid flow. A simple experiment with a well-shaken

46 bottle of soda pop (i.e., a sweet, carbonated, beverage) demonstrates that this notion

47 is ill conceived. Once the bottle is opened some pop is lost, but, after a short time,

48 flow ceases leaving most of the initial pop in the bottle. In the metamorphic

49 analogy, the bottle is the porous rock matrix and the pop is its pore fluid. How

50 then is this pore fluid expelled? As early as 1911, Goldschmidt (1954) realized that

51 fluid expulsion could only occur if the rock compacts and squeezes the pore fluid

52 out. The compaction process is a form of deformation that, usually, is driven by the

53 weight of the overlying rock. In this case, the downward flow of the rock matrix, in

54 response to gravity, is responsible for the upward flow of the less dense pore fluid.

55 Compaction driven fluid flow is complex because it is inseparable from rock

56 deformation and because the hydraulic properties that limit fluid flow through the

57 rock matrix, such as permeability and porosity, are dynamic. This chapter outlines a

58 physical model for the compaction process in the Earth’s lower crust. While the

59 specifics of this chapter are of direct relevance only to continental crust, the

60 concepts apply to oceanic crust as well.

61 Metamorphic devolatilization usually results in a significant decrease in the

62 volume of the residual solid, e.g., serpentine dehydration causes a reduction in

63 the solid volume in excess of 10%. Without compaction, this change in volume

64 would be preserved as grain-scale porosity. Thus, the near absence of grain-scale

65 porosity in exhumed metamorphic rocks (Norton and Knapp 1977) is unequivocal

66 evidence for irreversible compaction. Despite this evidence, irreversible compac-

67 tion is almost universally disregarded in quantitative models of metamorphic fluid

68 flow. This neglect is reasonable provided the fluid flow of interest occurs on a short

69 time scale compared to the time scale for compaction. Because viscous compaction

70 is thermally-activated, neglecting compaction becomes more problematic, but not
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71necessarily invalid, with increasing metamorphic grade. Likewise, although com-

72paction is an appealing explanation for ubiquitous evidence of high fluid pressure

73during metamorphism (e.g., Etheridge et al. 1984; Sibson 1992; McCuaig and

74Kerrich 1998; Simpson 1998; Cox 2005; Rubinstein et al. 2007; Peng et al. 2008;

75Scarpa et al. 2008; Padron-Navarta et al. 2010), high fluid pressures cannot be

76explained unless metamorphic systems are poorly drained. However, if metamor-

77phic systems are poorly drained, high fluid pressures may simply be a consequence

78of ephemeral fluid production. This argument is not brought forward to justify the

79neglect of compaction in modeling metamorphic fluid flow, but rather to emphasize

80that the conditions at which compaction becomes important are uncertain. An

81intriguing set of observations (Young and Rumble 1993; van Haren et al. 1996;

82Graham et al. 1998) indicate that localized fluid-rock interaction at amphibolite-

83facies conditions occurred on a time scale of 103–105 year during much longer

84(~107 year) regional metamorphic events. An explanation for the limited duration

85of fluid-rock interaction is that compaction sealed the rocks on the 103–105 year

86time scale. Transiently high metamorphic permeability on similar time scales

87(Ingebritsen and Manning 2010) and geophysically observable sub-Himalyan den-

88sification on a time scale of < 1 My at eclogite facies conditions (Hetenyi et al.

892007) provide additional evidence that compaction is an efficient process at mod-

90erate metamorphic temperatures. Compaction is synonymous with fluid expulsion,

91thus if metamorphic fluid flow is compaction dominated, exotic fluid sources and

92crustal scale fluid recirculation should have limited impact on the metamorphic

93fluid budget (Walther and Orville 1982). That metamorphic fluid fluxes, inferred

94from field studies (e.g., Ferry 1994; Skelton 1996; Wing and Ferry 2007; Manning

95and Ingebritsen 1999), are comparable to the vertically integrated metamorphic

96fluid production (Walther and Orville 1982; Yardley 1983; Connolly and

97Thompson 1989) is suggestive that metamorphic flow regimes are indeed compac-

98tion dominated.

99The assumption of classical metamorphic petrology, that fluid pressure is equal

100to the total pressure, implies that rocks compact in response to negligible effective

101pressure, i.e., that rocks have no strength. In this limit, compaction driven flow of a

102low-density fluid can only be upward (Walther and Orville 1982). A surprising

103feature of compaction-driven fluid flow in rocks of finite strength is that a perturba-

104tion, e.g., a metamorphic devolatilization reaction, to a uniform flow regime

105induces a regime in which fluid flow occurs by the propagation of domains of

106fluid-filled porosity (Richter and McKenzie 1984; Scott and Stevenson 1986;

107Suetnova et al. 1994; Wiggins and Spiegelman 1995; Connolly 1997). The

108properties of these domains closely approximate steady-state wave solutions to

109the equations that describe fluid flow in compacting media (Barcilon and Richter

1101986; Barcilon and Lovera 1989). In this porosity wave propagated flow regime,

111while the overall tendency is to drive fluid upward or, in the presence of tectonic

112stress, toward low mean stress (Connolly and Podladchikov 2004), lateral fluid flow

113occurs on the time and spatial scales of the steady-state waves. In a homogeneous

114crust that is not subject to tectonic forcing, such waves would be the primary

115mechanism of metamorphic fluid flow. This idealization is far from reality, but

14 A Hydromechanical Model for Lower Crustal Fluid Flow 595

jamie
Cross-Out

jamie
Cross-Out

jamie
Cross-Out

jamie
Highlight



116 the steady-state wave solutions define background patterns upon which the effects

117 of lithological heterogeneity and tectonic deformation are imposed. Consequently,

118 the spatial and temporal scales of the compaction process limit the extent to which

119 perturbations may influence the idealized compaction-driven flow regime. For

120 example, a transient shear zone may induce both lateral and downward fluid flow

121 (Austrheim 1987; Sibson 1992), but it can only do so on time and spatial scales

122 shorter than those for compaction (Connolly 2010). Understanding the time and

123 length scales of steady-state wave solutions to the compaction equations is thus

124 essential to understanding lower crustal fluid flow, even if the flow is not dominated

125 by compaction.

126 The physical explanation for the existence of porosity waves requires only an

127 elementary understanding of the driving forces and constitutive relations that

128 govern fluid flow, but the derivation of the steady-state solutions involves cumber-

129 some math (Barcilon and Richter 1986; Barcilon and Lovera 1989). The intent here

130 is to avoid this math, which is summarized in the Appendix, and to focus on the

131 physical constraints that influence the steady-state solutions. The first part of this

132 Chapter reviews the rheological and hydraulic concepts relevant to the compaction

133 process. Large scale modeling of metamorphic fluid flow inevitably invokes a

134 steady-state hydraulic regime to define the pre-metamorphic state. This initial

135 steady state is critical to model outcomes because it determines the response of

136 the system to the metamorphic perturbation. Unfortunately, because metamorphism

137 is the most probable source of lower crustal fluids, the assumption of an initial

138 steady state leaves much to be desired. In truth, in the modeling of metamorphic

139 fluid flow, less is known about the initial state than is known about the metamorphic

140 state. The second part of this Chapter draws attention to the uncertainties inherent in

141 defining the pre-metamorphic lower crustal hydraulic regime, and the final part

142 details the expected scales and patterns of compaction-driven flow as function of

143 initial conditions and rheology.

144 14.2 Compaction Pressures and Rheologic and Hydraulic

145 Constitutive Relations

146 In compaction problems, fluid is distinguished from the solid phase(s) by its shear

147 strength; specifically the fluid is defined as a phase that cannot support deviatoric

148 stress. This definition has the implication that on the time scale relevant for

149 compaction, fluid pressure is uniform throughout the connected porosity at the

150 scale of the solid grains and is independent of the solid pressure. The term porosity

151 is used here to mean only this connected porosity; rocks may contain porosity that is

152 not interconnected, but because this porosity does not influence fluid flow it is of

153 little interest. Further, it is assumed that the porosity is always filled by fluid, i.e.,

154 porosity is simply the volume fraction of fluid in the solid matrix. Although the

155 word porosity conjures up an image of grain-scale structures, it may apply to
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156substantially larger features, such as fractures, provided these features are small in

157comparison to the length scale for fluid flow.

158Compaction is formally the change in porosity caused by dilational (volume

159changing) strain of a solid matrix, i.e., the isotropic component of the strain tensor.

160It follows from the Curie principle that compaction can only be a direct function of

161invariant characteristics of the stress state. From Terzhaghi’s effective stress con-

162cept, the simplest invariant is the effective pressure, i.e., the difference between

163total pressure and fluid pressure, which is assumed here to be the sole cause of

164compaction. The total pressure can be decomposed into components due to the fluid

165and solid as

p ¼ 1� fð Þps þ fpf (14.1)

166where f is porosity and subscripts s and f denote solid and fluid, respectively (see

167Table 14.1 for notation). Making use of Eq. 14.1, and observing that mean stress, �s,
168and pressure are formally equivalent, effective pressure is

pe � �s� pf ¼ 1� fð Þ ps � pfð Þ: (14.2)

169Because high fluid pressures may lead to negative effective pressures, it is

170sometimes convenient to describe compaction processes in terms of fluid overpres-

171sure, which is defined here as � pe.
172Darcy’s law (e.g., McKenzie 1984) relates the volumetric fluid flux relative

q ¼ � 1� fð Þ k
m

rpf � rfguzð Þ (14.3)

173through a porous matrix to the difference between the actual fluid pressure gradient

174and the hydrostatic pressure gradient of the fluid (rfguz), where k is the hydraulic

175permeability of the solid matrix, rf and m are the density and shear viscosity of the

176fluid, and uz is a downward directed unit vector. It is often useful to characterize the

177dynamics of fluid flow by the macroscopic velocity, v, of the fluid rather than flux.

178As the fluid flux is the product of the fluid velocity and porosity, any expression in

179terms of flux can be converted to one in terms of velocity via

v ¼ q f= (14.4)

180Fluid flux is a vector, which is typically negative (upward) for a downward

181directed depth coordinate. This is a potential source of confusion in that a large

182upward flux is, numerically, less than a small flux. To minimize such confusion, the

183magnitude of a vectorial quantity, indicated by italics (e.g., q for flux q and v for

184velocity v), is used when direction is evident. Darcy’s law relates flux to pressure

185gradients rather than pressure. This has the implication that a high-pressure fluid

186need not flow provided its pressure gradient is hydrostatic.
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187 In compaction problems, it is useful to reformulate Darcy’s law in terms of the

188 effective pressure responsible for compaction as

q ¼ � 1� fð Þ k
m

r�s�rpe � rfguzð Þ: (14.5)

189 For the classical p ¼ pf metamorphic model (i.e., rpe ¼ 0), this form

190 demonstrates that the direction of fluid flow is a function of the mean stress

t1:1 Table 14.1 Frequently used symbols

Symbol Meaningt1:2

A Coefficient of viscous flow, Eqs. 14.11 and 14.12t1:3

cf Geometric and grain-size dependent factor in the permeability function, Eq. 14.17t1:4

cs Geometric factor in the compaction rate function, Eq. 14.16t1:5

D Pre-exponential term in Arrhenius dependence of A, Eqs. 14.12 and 14.14t1:6

e Base of natural logarithms (2.718. . .)t1:7

g Magnitude of gravitational accelerationt1:8

k; k0 Permeability, Eq. 14.17; background valuet1:9

lA Viscous e-fold length, Eq. 14.15t1:10

nf Porosity exponent in the permeability function, Eq. 14.17t1:11

ns Stress exponent in the viscous flow law, Eq. 14.11t1:12

O(n) Literally, “of the order of magnitude of n”t1:13

p; pe; pf; ps Total pressure, Eq. 14.1; effective pressure, p � pf, Eq. 14.2; fluid pressure; solid

pressuret1:14

q; q; q0;�q Fluid flux, Eqs. 14.3, 14.5, 14.8, and 14.37; fluid flux magnitude; background

value; time-averaged valuet1:15

qe Time-averaged fluid flux (magnitude) associated with a 1-d wave, Eq. 14.25t1:16

Q Activation energy for viscous deformation of the solid matrixt1:17

R Universal gas constantt1:18

R Viscosity contrastt1:19

T Temperature, Kt1:20

uz A downward directed unit vectort1:21

Ve;V
1d
e

Fluid volume associated with a wave, Eq. 14.27; 1-d volume, Eq. 14.26t1:22

v; v0; vf Fluid speed; background value; wave speed, Eq. 14.56t1:23

z Depth coordinate, positive downwardt1:24

_e Shear strain rate, Eq. 14.11t1:25

_ef Compaction rate, Eq. 14.16t1:26

d; dd Viscous compaction length, Eq. 14.23; decompaction length for decompaction-

weakening, Eq. 14.30t1:27

Dr; Ds rs � rf; differential stresst1:28

Z Solid shear viscosityt1:29

l Wavelengtht1:30

m Fluid shear viscosityt1:31

f; f0 Porosity (hydraulically connected); background valuet1:32

rs; rf Solid density; fluid densityt1:33

�s; sy Mean stress (p), Eq. 14.38; tensile yield stresst1:34

t Compaction time scale, d/v0, Eq. 14.24t1:35

r;r � Gradient (∂/∂z in 1-d); divergence (∂/∂z in 1-d)t1:36
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191gradient, which may be influenced by tectonic processes. These effects complicate

192discussion because they depend on the specifics of the tectonically-induced stress

193field. To eliminate this complication, it is assumed that the mean stress gradient is

194due entirely to the vertical load, i.e., that pressure is lithostatic. Tectonic stress

195affects the direction of compaction driven flow, but does not affect the compaction

196mechanism, thus the lithostatic assumption is not essential to any of the phenomena

197discussed here. Making the additional assumptions that solid density is not strongly

198variable and that porosity is small (i.e., 1 � f � 1), total and effective pressures are

p � ps � rsgz (14.6)

pe � rsgz� pf ; (14.7)

199where rs is the density of the solid matrix and z is depth. Rearranging Eq. 14.7 to

200give fluid pressure in terms of effective pressure, Darcy’s law then simplifies to

q ¼ k

m
rpe � Drguzð Þ: (14.8)

201At near surface conditions, fluid pressures are near hydrostatic, i.e.,

202rpe � Drguz, and small perturbations in pressure can cause fluids to flow in any

203direction. This regime is often referred to as one of normal fluid pressure, whereas

204at conditions of lithostatic fluid pressure, in which case rpe ¼ 0,

q ¼ kDrg m= (14.9)

205and flux is vertical and essentially controlled by permeability.

206Equations 14.3 and 14.4, give the fluid velocity and flux relative to the reference

207frame of the solid, but in geological compaction problems solid velocities are finite

208relative to the Earth’s surface. It is assumed here that the solid velocity is negligible.

209This assumption is justified in the small porosity limit (Connolly and Podladchikov

2102007). The Appendix provides a more rigorous treatment that does not neglect solid

211velocity.

21214.2.1 Rheology

213Just as in the case of non-dilational rheology, the endmember compaction

214rheologies are elastic, plastic, and viscous. Strictly elastic, plastic, and viscous

215describe, respectively, reversible time-independent, irreversible time-independent,

216and irreversible time-dependent deformation (Hill 1950). In the geological litera-

217ture these terms, particularly plastic, are often confused with terms such as ductile

218and brittle that describe deformation style. In geological materials, the origin of

219ductile behavior is most commonly viscous rheology, but may also be a plastic

14 A Hydromechanical Model for Lower Crustal Fluid Flow 599

jamie
Callout
no new paragraph

jamie
Highlight

jamie
Highlight

jamie
Highlight



220 mechanism, while brittle deformation is a manifestation of plasticity and is usually

221 localized (Ranalli 1995).

222 Elastic compaction and fluid expulsion results from both solid (bs) and fluid (bf)
223 compressibilities and a peculiar component referred to as pore compressibility that

224 is a property of the fluid–rock aggregate (Gueguen et al. 2004). Although pore

225 compressibility dominates the compaction of poorly consolidated sediments, in

226 rocks with porosities below a few percent, pore compressibilities become compa-

227 rable to the solid compressibility, which is O(10�11) Pa�1 (Wong et al. 2004; the

228 notation O(n), which means, literally, “of the order of magnitude of n”, is used

229 extensively in this chapter because of our concern with scales based on highly

230 uncertain parameters). Thus, for lower crustal rocks, the elastic compaction caused

231 by a change in effective pressure Dpe is

Df f= � �bsDpe: (14.10)

232 From Eq. 14.10, a reduction in pf from lithostatic to hydrostatic conditions at

233 20 km depth (Dpe ¼ Drgz) decreases by 0.4% of its initial value. As fluid

234 compressibilities are roughly an order of magnitude greater than solid compress-

235 ibility at the conditions of the lower crust (Walther and Orville 1982), the net fluid

236 expulsion necessary to effect the pressure drop is only ~4.4% of the fluid mass

237 initially present in the porosity. Thus, at typical lower crustal conditions, elastic

238 dilational strain can be neglected as a mechanism for lower crustal fluid expulsion.

239 In this regard it is important to distinguish fluid expulsion from fluid flow as,

240 particularly in the non-compacting limit, thermoelastic expansivity of the fluid

241 may create pressure gradients responsible for fluid circulation (e.g., Hanson 1997;

242 Staude et al. 2009; Nabelek 2009).

243 Excepting irreversible phase transformations, viscous and plastic bulk strains in

244 rocks are caused by microscopic shear deformation that eliminates porosity. Plastic

245 rheologies are complex, but fortunately only cataclastic and Mohr-Coulomb plastic

246 rheologies are of relevance here. Cataclasis (Wong et al. 2004), the crushing of

247 grains in response to increasing load, is a well-known phenomenon in sedimentary

248 basins where it gives rise to an exponential decay of porosity with depth (Athy

249 1930; Connolly and Podladchikov 2000). Crushing is inescapable once stress

250 concentrations approach the ultimate strength of the solid material (Hill 1950),

251 which is itself 10% of the shear modulus of the solid. Thus, the role of cataclastic

252 compaction must be acknowledged once stress concentrations are O(1) GPa. In
253 sedimentary rocks, the requisite stress concentrations are caused by irregular grain

254 contacts. These asperities are gradually eliminated during compaction, leading to

255 strain-hardening. In sediments, this strain-hardening typically limits cataclastic

256 compaction to rocks with porosities in excess of a few percent (Hunt 1990; Powley

257 1990). Cataclasis is thus unlikely in lower crustal metamorphic rocks unless

258 effective pressures are exceptional.

259 Although brittle failure is usually thought of as a mechanism for accommodating

260 shear strain, positive dilational strain (i.e., dilatancy) is an inescapable consequence

261 of non-associated plastic (brittle) failure. If an imposed differential stress is large in
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262comparison to the tensile strength of the rock matrix, brittle failure may limit fluid

263pressure to sublithostatic values (Sibson 2004, cf. Rozhko et al. 2007). Given that

264rock tensile strengths rarely exceed 50 MPa, and may be near zero, in some

265circumstances truly lithostatic fluid pressures may only be possible in the absence

266of significant differential stress, whereupon fluid pressure is limited by

267hydrofracturing, which occurs when the fluid overpressure exceeds tensile strength.

268Viscous compaction is unimportant at surface conditions, but, because it is a

269thermally activated mechanism, it becomes inevitable with increasing temperature.

270The viscous rheology of the crust is usually described by a power-law constitutive

271relationship of the form (e.g., Kohlstedt et al. 1995; Ranalli 1995)

_e ¼ A Dsj jns�1Ds; (14.11)

272where _e is the strain rate in response to differential stress Ds, ns is the stress

273exponent, and A is the coefficient of viscous flow. The coefficient A is a temperature

274dependent material property that may also be sensitive to grain size (e.g., pressure

275solution creep) and chemical factors (e.g., the chemical potential of oxygen and/or

276water). These latter dependencies are uncertain and therefore disregarded in large-

277scale modeling, but the temperature dependence is usually retained and described

278by the Arrhenius relation

A ¼ D exp
�Q

RT

� �
; (14.12)

279where Q is the activation energy for the viscous mechanism, and D is a material

280property that is independent of temperature. To provide a simple model for the

281viscous rheology of the lower crust, D is parameterized here in terms of the strain-

282rate, stress, temperature, and depth of the brittle-ductile transition, i.e., the depth at

283which viscous mechanisms become capable of accommodating tectonic strain rates

284(Kohlstedt et al. 1995). In compressional settings, at this depth, zBD, assuming

285s2 ¼ (s1 + s3)/2 and the hydrostatic fluid pressure, the Mohr-Coulomb rheology

286of the upper crust defines the differential stress as (Petrini and Podladchikov 2000)

DsBD ¼ gzBD
rf 3 sin y� 1ð Þ � 2rUC sin y

sin y� 1
(14.13)

287where, by Byerlee’s law, the internal angle of friction y ¼ p/6 (Ranalli 1995) and

288rUC is the density of upper crustal rock. For rf/rUC ¼ 0.3, Eq. 14.13 simplifies to

289DsBD ¼ 1.7rUCgzBD. Substituting this estimate for Ds in Eq. 14.11 and making

290use of Eq. 14.12

D ¼ _eBD
1:7zBDrUCgð Þns exp

Q

RTBD

� �
: (14.14)
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291 The validity of this parameterization hinges on whether Eqs. 14.11 and 14.12

292 provide an adequate description of the ductile mechanism, but does not require or

293 imply that metamorphism occurs in a compressional tectonic setting or that the

294 brittle-ductile transition during metamorphism occurs at the conditions chosen for

295 the parameterization. Activation energies and stress exponents are relatively well

296 known from rock deformation experiments. Typical values for crustal rocks are in

297 the range ns ¼ 2.5 � 4 and Q ¼ 150 � 400 kJ/mol. The depth, temperature, and

298 strain rate at the base of the seismogenic zone, which is usually taken to correspond

299 with the brittle portion of the crust (Sibson 1986; Scholz 1988; Zoback and

300 Townend 2001), are zBD � 3 � 20 km, TBD � 623 � 723 K and _eBD� 10�12 to

301 10�16 s�1, but these ranges are not entirely independent due to autocorrelation

302 (Liotta and Ranalli 1999; Ranalli and Rybach 2005). The values ns ¼ 3, Q ¼ 250

303 kJ/mol, TBD ¼ 623 K, _eBD ¼ 10�15 s�1, zBD ¼ 15 km, and rUC ¼ 2,700 kg/m3 are

304 taken here to represent a plausible, but by no means unique, condition for the

305 brittle-ductile transition.

306 It is often useful to characterize the variation in viscous rheology due to the

307 increase in temperature with depth in terms of a depth interval rather than a

308 temperature change. For this purpose, differentiation of Eq. 14.12, with respect to

309 depth, yields the desired measure

lA ¼ A
@A

@z

�
¼ RT2

Q @T
@z

; (14.15)

310 which is the change in depth necessary to increase strain rates by a factor of

311 e (2.718. . .). For the parameter choices specified above, the viscous e-fold length

312 lAis O(1) km at the conditions of lower crustal metamorphism (Fig. 14.1). In the

313 upper crust, pressure solution gives rise to a linear viscous (ns ¼ 1) rheology that is

314 characterized by activation energies in the range 20–40 kJ/mol (Rutter 1983; Spiers

315 and Schutjens 1990; Shimizu 1995; Connolly and Podladchikov 2000). From

316 Eq. 14.15, such small activation energies increase lA by an order of magnitude,

317 implying a weak depth dependence that is inconsistent with the restricted depth

318 range and temperature dependence of the seismogenic zone (Sibson 1986; Scholz

319 1988; Ranalli and Rybach 2005). Thus, it is unlikely that pressure solution is the

320 viscous mechanism responsible for the brittle-ductile transition.

321 For a material that deforms by viscous creep according to Eq. 14.11, the

322 compaction rate (Wilkinson and Ashby 1975) is

_ef ¼ 1

f
df
dt

¼ �cs
1� fð Þ2

1� f1=ns
� �ns A pej jns�1pe � �csA pej jns�1pe; (14.16)

323 where the approximate form, which is adopted hereafter, applies in the small-

324 porosity limit. The geometric factor cs ¼ n�ns
s 3 2=ð Þnsþ1

follows rigorously only

325 for spherical pore geometry. At the level of accuracy required here, this geometric
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326assumption is an unimportant source of variability. For the specific case of ns ¼ 3,

327cs ¼ 3/16.

328The dependence of the viscous compaction rate on effective pressure has a

329number of implications for compaction processes during metamorphism. Most

330notably the viscous mechanism cannot operate at the pf ¼ pt condition generally

331assumed in metamorphic petrology. Thus, dilational strain, caused by a metamor-

332phic reaction that initiates at pf ¼ pt, must be accommodated by elastic

333mechanisms until the induced stresses become large enough to activate viscous or

334plastic deformation. As these elastic strains are insignificant, during this incipient

335stage metamorphism is effectively isochoric rather than isobaric.

336The assumption that the viscous mechanism is non-linear is not essential to any

337subsequent argumentation; it is adopted because it is widely accepted and general.

338Relations for the special case of linear viscous rheology are obtained from the relations

339for the non-linear case by observing that, when ns ¼ 1, viscosity is 1/(3A). Both
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Fig. 14.1 The viscous e-fold length lA is the characteristic length scale for variation in the ductile
rheology of the lower crust with depth due to thermal activation (Eq. 14.15). For a given stress,

strain rates increase 10-fold over a depth interval Dz ¼ 2.3 lA. The viscous e-fold length is

computed for the indicated geotherms, a reference temperature of 623 K at 15 km depth, and an

activation energy of Q ¼ 250 kJ/mol. Experimentally determined activation energies for disloca-

tion creep in silicate minerals are in the range 135–400 kJ/mol (e.g., Paterson and Luan 1990;

Ranalli 1995). Variation within this range affects lA by less than a factor of two
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340 compaction and macroscopic shear deformation are accomplished by microscopic

341 shear. Thus, if a rock is simultaneously subject to both modes of deformation, then

342 they must be accommodated by the same microscopic mechanism. This mechanism is

343 determined by the largest of the stresses responsible for the deformation, |Ds| or |pe|,
344 with the result that, if the stresses are of different magnitude, the viscous response to the

345 inferior stress is approximately linear and determined by effective viscosity resulting

346 from the deformation induced by the superior stress. Regardless of magnitude, far-field

347 tectonic stress facilitates compaction by lowering the effective viscosity of the solid

348 matrix (Tumarkina et al. 2011).

349 14.2.2 Permeability

350 Although the hydraulic permeability of rocks is extraordinarily variable, it is well

351 established from both theoretical studies and empirical observation (Wark and

352 Watson 1998; Xiao et al. 2006) that the permeability of a given rock will vary as

353 a strong function of its connected porosity. Typically, a power-law relationship is

354 assumed such that if the permeability is k0 at porosity f0, then

k ¼ k0 f f0=ð Þnf ¼ cff
nf : (14.17)

355 In its second form, Eq. 14.17 separates the variability of permeability into a

356 component related to its porosity dependence and a coefficient, cf, which is a

357 function of pore geometry and proportional to the square of the matrix grain size.

358 From analysis of in situ rock permeability, Neuzil (1994) shows that pore geometry

359 and grain size gives rise to variations in permeability that span eight orders of

360 magnitude, but that porosity dependence is approximately cubic. This cubic depen-

361 dence, i.e., nf ¼ 3, is adopted here and is predicted from theory irrespective of

362 whether flow is intergranular or fracture controlled (Norton and Knapp 1977;

363 Gavrilenko and Gueguen 1993). Higher exponents are observed in rocks where

364 the degree of hydraulic connectivity varies strongly with porosity (Zhu et al. 1995;

365 Zhu et al. 1999).

366 14.2.3 Porosity

367 Given a steady source at depth, it is conceivable that crustal rocks could adjust their

368 permeability to accommodate this flux at lithostatic pressure (Connolly and

369 Thompson 1989). While such a model is problematic, as it implies rocks have no

370 strength, it provides the only basis for assuming that the lower crust has a tendency

371 to evolve towards a state with homogeneous permeability. Unfortunately, this

372 tenuous argument does not extend to porosity given that different lithologies may

373 have the same permeability with drastically different porosities (Neuzil 1994;
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374Thompson and Connolly 1990). Thus, the only certainty about lower crustal

375porosity is that it is spatially and temporally variable. An upper bound on lower

376crustal porosities of O(10�2) is provided by the sensitivity of geophysical

377measurements, but there is no lower bound. On the basis of isotopic diffusion

378profiles, Skelton et al. (2000) infer background porosities, i.e., the porosity in

379non-reactive metaphyllites about a metabasite undergoing devolatilization at

380greenschist facies conditions, in the range of f0 ~ 10�3 to 10�6. These are consis-

381tent with grain scale porosities in the range 10�3 to 10�6 measured in exhumed

382metamorphic rocks (Norton and Knapp 1977). This variability has non-trivial

383consequences because, discounting the influence of phase changes on intrinsic

384material properties, the impact of metamorphic reactions on the mechanical

385properties of the crust is determined by the relative change in porosity via the

386constitutive relations for permeability (Eq. 14.17) and rheology (Eq. 14.16), e.g., an

387increase in porosity of 10�3 has no significant influence on permeability if it occurs

388in rocks with an initial porosity of 10�2, but if the initial porosity is 10�6,

389permeability increases by nine orders of magnitude.

390Hydraulically connected porosities of < O(10�2) may seem implausible to a

391reader familiar with percolation theory models of rock permeability (Gueguen and

392Palciauskas 1994); however such models assume static pore structure. In natural

393systems, experimental, theoretical, and numerical evidence suggests that textural

394equilibration may maintain hydraulic connectivity to vanishingly small porosities

395(Cheadle et al. 2004; cf., Holness and Siklos 2000 and Price et al. 2006). As

396remarked earlier (Sect. 14.1), the term porosity is used here to denote any hydrauli-

397cally connected textural features (e.g., cracks) present on a spatial scale signifi-

398cantly less than the, as yet to be defined, compaction length scale. Thus, even if a

399percolation threshold is relevant to the expulsion process, porosity may take on any

400value between zero and unity. Evidence for high metamorphic fluid pressures, in

401combination with low fluid production rates, provides an indirect argument that

402these porosities are small at the onset of metamorphism. For example, theoretical

403porosity-permeability models (Connolly et al. 2009) imply that for O(1) mm

404grain size. The porosity necessary, to conduct a plausible O(10�13) m/s devolati-

405lization-generated fluid flux (Connolly and Thompson 1989) at lithostatic pressure,

406is O(10�5).

407Whether rocks exist that have no hydraulically connected porosity is, to a certain

408degree, a metaphysical question. Viscous compaction may completely eliminate

409microcrack connectivity (Gratier et al. 2003; Tenthorey and Cox 2006), but, in

410texturally equilibrated rocks, grain-scale viscous compaction reduces porosity

411asymptotically with time. Similarly, chemical cementation and retrograde hydra-

412tion require the ingress of a fluid phase and therefore are unlikely to completely

413eliminate porosity. Even seemingly pristine igneous rocks have detectable hydrau-

414lic connectivity (Norton and Knapp 1977). Regardless of whether rocks with no

415hydraulically connected porosity exist, it is certainly possible that devolatilization

416may occur in a setting in which the surrounding rocks have such low permeabilities

417that viscous dilational mechanisms become ineffective on the geological time scale.

418The compaction time scale, discussed subsequently (Sect. 14.5.2), can be used to

419assess when the viscous mechanism becomes ineffective. In this limit, elastic or
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420 plastic dilational mechanisms must be responsible for fluid flow. Elastic and plastic

421 mechanisms do not require finite hydraulic connectivity and are therefore also

422 capable of explaining fluid flow into truly impermeable rocks (Connolly and

423 Podladchikov 1998), but these mechanisms introduce complexities that are beyond

424 the scope of this Chapter.

425 14.3 The Lower Crustal Hydrologic Regime

426 Conventional wisdom holds that continental crust can be divided into two hydro-

427 logic regimes, an upper crustal regime in which fluid pressures are near hydrostatic

428 and a lower crustal regime in which fluid pressures are lithostatic (Fig. 14.2a).

429 Direct (Huenges et al. 1997) and geophysical observations (Zoback and Townend

430 2001) confirm the existence of the upper regime and suggest that it can extend to

431 depths of 10–15 km, while fluid inclusion data and deformation styles support the

432 existence of the lower regime, at least during episodes of regional metamorphism

433 (e.g., Etheridge et al. 1984; Sibson 1992; Cox 2005). The observation that fluid

434 overpressures develop at a eustatic compaction front at ~ 3–4 km depth in many

435 sedimentary basins suggests that compaction can establish a steady-state connec-

436 tion between the hydrostatic and lithostatic regimes. However, this steady-state is

437 only possible in conjunction with sedimentation, because sediment burial is neces-

438 sary to compensate for upward propagation of the compaction front (Connolly and

439 Podladchikov 2000). Given that steady burial is not a characteristic continental

440 process, a steady-state connection between the hydrologic regimes is improbable.

441 In active metamorphic settings, the transition between hydraulic regimes can be

442 explained by both the compacting and non-compacting limiting cases. In the

443 compacting case, thermally activated viscous compaction reduces permeability to

444 levels at which drainage to the upper crust cannot keep pace with expulsion and/or

445 metamorphic fluid production. This scenario is the basis for the false notion that the

446 transition to lithostatic fluid pressure is coincident with the brittle-ductile transition.

447 Assuming hydrostatic fluid pressures are characteristic of the upper crust, at the

448 brittle-ductile transition the effective pressure responsible for compaction is com-

449 parable to the differential stress that drives tectonic deformation (Connolly and

450 Podladchikov 2004). From Eqs. 14.11 to 14.16, the compaction rate at the transition

451 is therefore comparable to the tectonic strain rate. Thus, for a tectonic strain rate of

452 10�15 s�1, compaction at the brittle-ductile transition requires 2:3cs _e �= 388 My to

453 reduce porosity by an order of magnitude. As this time scale is greater than the time

454 scale for heat-conduction limited metamorphism, compaction at the depth of the

455 brittle-ductile transition is an ineffective means of regulating metamorphic fluid

456 pressure, unless metamorphism is coeval with anomalously high rates of tectonic

457 deformation. This generality applies to the expulsion process, but the healing of

458 microcrack controlled permeability in shear zones is an indirect mechanism by

459 which localized compaction at shallow crustal levels, and short time scales, may

460 generate hydraulic seals (Gratier et al. 2003; Tenthorey and Cox 2006). These seals
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461may cause fluid overpressure to develop as consequence of local fluid production or

462deeper expulsion processes (Cox 2005). Viscous compaction rates increase by a

463factor of e with an increase in depth of Dz ~ lA, thus the depth at which compaction

464operates pervasively on the metamorphic time scale must lie at least several viscous

465e-fold lengths (Fig. 14.1) below the brittle-ductile transition, but the exact depth is

466dependent on the rate of metamorphism.

467In the non-compacting limit (Fig. 14.2b), lithostatic fluid pressure is generated

468when metamorphic fluid production overwhelms drainage capacity. A complication
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Fig. 14.2 Three models for fluid pressure in the crust. The petrological lithostatic fluid pressure

model (a) is hydrologically untenable unless permeability is uniform throughout the lower crust

and the fluid originates from a steady sub-crustal source. In the non-compacting scenario

(b) drainage of lower crustal rocks is limited by the least permeable horizon. In the absence of

short-term effects related to fluid production, this horizon, i.e., top-seal, would mark the closest

approach to lithostatic fluid pressure. Above this horizon fluid pressures would be near hydrostatic.

While below the horizon fluid pressure would increase step wise across low permeability seals

(Etheridge et al. 1984; Gold and Soter 1985; Hunt 1990; Powley 1990). The superposition of

thermally activated compaction on the non-compacting scenario gives rise to three hydrologic

regimes (c). An upper crustal regime in which faulting maintains such high permeabilities that

negligible deviation from hydrostatic fluid pressure is adequate to drive fluid circulation (Zoback

and Townend 2001) is limited at depth by the conditions at which localized compaction becomes

an effective mechanism for sealing fault-generated permeability (Gratier et al. 2003; Tenthorey

and Cox 2006). At greater depths, pervasive compaction and/or metamorphic fluid production may

generate transient fluid overpressure that is periodically relieved by faulting (Sibson 1992). At the

brittle-ductile transition (i.e., the base of the seismogenic zone) it is improbable that pervasive

compaction can keep pace with metamorphic fluid production; thus the transitional hydrologic

regime is likely to persist over an interval that extends ~10 lA below the brittle-ductile transition.

Beneath the transitional regime, pervasive compaction is capable of generating hydraulic seals and

fluid, if present, is at near lithostatic pressure. Within this lower-most regime, fluid flow is truly

compaction-driven. In the absence of fluid production, the tendency of both time and depth is to

decrease the wavelength of the fluid pressure compartments resulting in a near-steady regime

approximating the petrological ideal. Barring the possibility of a sub-crustal fluid source, the flux

in this near steady regime must decrease with depth. Thus the magnitude of the perturbation caused

by metamorphic devolatilization to the lower crustal regime is dependent on its depth
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469 in this scenario is that if fluid pressures are lithostatic throughout the lower crust,

470 then either fluxes are uniform and vertical throughout the lower crust or permeabil-

471 ity must be a function of flux rather than porosity. The physical absurdity of either

472 case leads to the conclusion that a heterogeneous permeability structure is the only

473 plausible model for the non-compacting limit. In this case (Fig. 14.2c), fluid

474 pressures cannot be uniformly lithostatic, but approach lithostatic values at low-

475 permeability seals (e.g., Etheridge et al. 1984). The resulting compartmentalized

476 fluid pressure profile is identical to the compartmentalization observed in sedimen-

477 tary basins (Hunt 1990; Powley 1990). Even in the non-compacting limit, brittle

478 failure permits permeability to increase to accommodate vertical fluxes, but, given

479 the variability of natural permeability with lithology, the permeability of a seal-

480 forming lithology may be orders of magnitude lower than in the intervening rocks.

481 If such seals exist, then, in the absence of metamorphic fluid production, the lower

482 crust may achieve a quasi-steady state with near uniform vertical fluxes in which

483 the closest approach to lithostatic fluid pressure occurs at the uppermost seal.

484 Beneath each seal, Darcy’s law requires that the fluid pressure gradient must be

485 nearly hydrostatic, despite large absolute fluid pressures. The time scale for

486 reaching this steady state is dictated by the high-permeability rocks, whereas the

487 effective permeability of the lower crust is defined by the permeability of the top

488 seal. As the vertical flux in this scenario must degrade with time, the number of

489 effective seals must likewise decrease.

490 As a crustal model, the non-compacting limit has the virtue that it acknowledges

491 the enormous variability of permeability with lithology and it has features that are

492 consistent with both direct and indirect observation. In the former category, results

493 from the Kola deep drilling project suggest the development of fluid compartmen-

494 talization at ~8 km depth within the crust (Zharikov et al. 2003). While in the latter

495 category, the existence of permeable horizons with sublithostatic fluid pressure are

496 essential to explain the lateral fluid flow so often inferred in metamorphic studies

497 (Ferry and Gerdes 1998; Wing and Ferry 2007; Staude et al. 2009). Counter-

498 intuitively, the non-compacting scenario is consistent with the idea that the

499 brittle-ductile transition is coincident with the transition in crustal hydrologic

500 regimes if faulting in the brittle domain is responsible for the high permeability

501 of the upper crust (Zoback and Townend 2001).

502 Thermal activation of viscous compaction dictates the degree to which the

503 compacting or non-compacting scenario is relevant to nature. As the non-

504 compacting limit is broadly consistent with the upper crustal hydrologic regime, it

505 is simplest to develop a conceptual model for the lower crust by considering how

506 depth-dependent viscosity would perturb the non-compacting limit. The primary

507 effect of depth-dependent viscosity would be to reduce the effective pressures

508 sustained within, and therefore the vertical extent of, compartments with depth.

509 Additionally, compaction would provide a source for fluxes, permitting pressuriza-

510 tion of seals independently of the top seal. These two effects would lead to a decrease

511 in the wavelength of fluid compartments with depth and lithostatically pressured

512 seals throughout the lower crust, i.e., a pressure profile that would approximate the

513 classical model of lithostatic fluid pressure at depth (Fig. 14.2c).
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514The absence of any uncontrived steady state for the lower crustal hydrologic

515regime poses a fundamental limitation to modeling metamorphic fluid flow in that

516the initial conditions for such models are unconstrained. Thus, by adjusting an

517arbitrary model parameter, such as the background fluid flux, the modeler has

518complete control on the impact of metamorphic fluid production on crustal fluid

519flow. This has the implication that forward modeling of metamorphic fluid flow has

520little predictive power and that hypothesis testing, based entirely upon modeling, is

521suspect. The utility of forward models is that they can be used to predict patterns.

522The comparison of these patterns with natural observations then provides a basis

523for inverting the parameters and the initial conditions of the metamorphic

524environments.

52514.4 Metamorphic Fluid Production and Dilational Strain

526A first order constraint on metamorphic fluid production follows from the observa-

527tion that between low and high metamorphic grades typical crustal rocks lose 5% of

528their mass as a consequence of devolitalization (Shaw 1956). For crustal

529thicknesses of lc ~ 35–70 km, this implies time-integrated fluxes of the order

q̂ ¼ wrrlc
rf

� O 104
� �

m (14.18)

530where w is the weight fraction of the volatiles released during metamorphism. This

531estimate is comparable to, or greater than, integrated fluxes derived from field

532studies (e.g., Ferry 1994; Skelton 1996; Wing and Ferry 2007; Staude et al. 2009)

533suggesting that, at least from a mass balance perspective, there is no necessity to

534invoke convection cells or exotic fluid sources to explain typical metamorphic

535fluxes. Introducing the assumptions that fluid expulsion keeps pace with metamor-

536phic fluid production and that the duration of metamorphism is dictated by the heat

537conduction time scale (tmet ~l
2
c k= , where k is thermal diffusivity, O(10�6) m2/s for

538crustal rocks), time-averaged fluxes are of the order

�q ¼ wrrk
rf lc

� O 10�12
� �

m/s: (14.19)

539By introducing an additional assumption about the pressure gradient responsible

540for the average flux, Darcy’s law can be inverted for time-averaged permeability

541(Ingebritsen and Manning 1999). The simplicity of this logic is seductive, but

542because metamorphic fluxes are dynamic, such averages are misleading. For

543example, Fulton et al. (2009) reject the contention of Ague et al. (1998) that

544dehydration generated fluid overpressures may trigger faulting. The fallacy of the

545argumentation being that, by definition, the average permeability is the permeabil-

546ity necessary to accommodate metamorphic fluxes at lithostatic pressure, thus it is

547unsurprising that a dynamic metamorphic flux is inadequate to generate
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548 overpressures if this permeability is assumed as an initial condition. From the point

549 of view of understanding dynamic flow, average permeability has no utility unless

550 permeability is a static property. However, it would be fortuitous if this static

551 permeability were exactly the permeability necessary to conduct metamorphic

552 fluxes at lithostatic pressure. Thus, the pertinent issue to understanding lower

553 crustal fluid flow is not the average permeability of the lower crust, but rather the

554 background permeability that characterizes the environment prior to the onset of the

555 flow perturbation of interest.

556 To illustrate the variability of metamorphic fluid production, consider equilib-

557 rium dehydration of a pelitic rock (Fig. 14.3). In the closed system limit, the

558 classical lithostatic fluid pressure model requires that volume changes associated

559 with devolatilization must be instantaneous. In the context of this model, the

560 instantaneous dilational strain is a function of pressure and temperature and can

561 be decomposed into components representing fluid and solid volumetric production

562 rates (Fig. 14.4). The rates are broadly consistent with the expectation that meta-

563 morphic devolatilization is associated with a reduction in solid volume, but an

564 increase in total volume; a behavior that would increase fluid pressure and drive

565 dilational deformation in real systems. If hydrofracture provides an instantaneous

566 dilational mechanism then the equilibrium model can be realized for the general

567 case. Exceptions to this generality occur at the extremes of the metamorphic

Fig. 14.3 Water-content for an average pelitic sediment composition (Plank and Langmuir 1998)

as a function of temperature and pressure, computed assuming equilibrium with a pure H2O fluid.

Red and blue lines indicate hot (20�C/km) and cold (10�C/km) metamorphic geotherms. The

increase in water-content at temperatures > 600�C is due to melting that occurs because the model

assumes water-saturation. This melting does not occur if the water released by low temperature

processes is expelled (Modified from Connolly (2010))
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568spectrum, i.e., at low temperature and high pressure or high temperature and low

569pressure. In the former case, the net volume change may be negative, an effect that

570would generate sub-lithostatic fluid pressures and therefore cause reaction rates to

571be limited by relatively slow viscous compaction mechanisms. In contrast, along

572high geothermal gradients the solid volume may increase (Fig. 14.4) during

573devolatilization requiring a more complex dilational deformation process than the

574hydrofracture mechanism assumed here.

575Under the assumption that fluids are expelled upwards as rapidly as they are

576produced, metamorphic fluxes are the vertically integrated fluid production rate,

577i.e., the component of the dilational strain rate attributed to fluid generation. Taking

578a heating rate of 3 K/My and assuming consistent heat-conduction controlled

579metamorphism (England and Thompson 1984), fluid fluxes estimated in this way

580for both cool and warm geothermal conditions are comparable to the average flux

581deduced earlier (Fig. 14.4). However, the more detailed model illustrates that fluxes
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Fig. 14.4 Dehydration induced, isobaric strain, and steady-state fluid fluxes as a function of depth for

themetamorphicmodel depicted in Fig. 14.3. The strain is resolved into the components due to fluid and

solid production and corrected for the effect of thermal expansivity. Fluid and solid production rates are

the product of the corresponding component of the isobaric strain multiplied by the metamorphic

heating rate. The steady-state drainage flux q is the vertically integrated fluid production rate computed

for a heating rate of 3�C/My. This is the flux required for drainage to balance fluid production. For the

hot geotherm, the curves are terminated at the onset ofmelting because themelting process is dependent

on the dynamics of fluid expulsion (Modified from Connolly (2010))
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582 must vary by orders of magnitude with depth. These fluxes place an upper bound on

583 the effective permeability of the lower crust, because it would be impossible to

584 generate elevated fluid pressure at a higher permeability. Unfortunately, there is

585 little reason to expect that background permeabilities will be conveniently close to

586 this upper bound, although they may well correlate with rates of metamorphism.

587 This latter issue is topical because recent studies (Oliver et al. 2000; Dewey 2005;

588 Ague and Baxter 2007; Warren et al. 2011) suggest that at least some episodes of

589 regional metamorphism occur on time scales one to two orders of magnitude shorter

590 than implied by the heat conduction time scale.

591 14.5 Fluid Flow in Compacting Media: Porosity Waves

592 Evidence that metamorphic devolatilization occurs at elevated fluid pressure leaves

593 little doubt that devolatilization perturbs the pre-metamorphic hydrologic regime. In

594 rigid rock, the dilational strain required for reaction progress is eliminated if the fluid

595 is simultaneously drained by hydraulic diffusion. However, if the rocks initially

596 contain fluid at or near lithostatic pressure, then, fromDarcy’s law, the fluid pressure

597 gradient required for this drainage must be supralithostatic and therefore inconsis-

598 tent with the existence of lithostatic fluid pressure during metamorphism. If the

599 definition of rigid is relaxed to allow for brittle failure at insignificant overpressure,

600 the coupling between reaction rate and pressure is eliminated, but so too are the fluid

601 overpressures that would be capable of explaining increased fluid drainage. Thus,

602 without compaction, the effect of brittle failure is to generate a horizon of elevated

603 porosity, filled by near lithostatically pressured fluid, sandwiched between relatively

604 impermeable unreacted rocks. The horizon is analogous to a wet sponge in that it

605 releases fluid only if it is squeezed. The weight of the overlying rocks acts as the

606 agent for squeezing by, what has been argued here to be, predominantly, viscous

607 compaction. The rate at which the fluid is drained is fundamentally limited by the

608 permeability of the overlying rocks, but because these rocks are also deformable this

609 permeability is dynamic. As noted earlier, the peculiar feature of fluid flow in this

610 scenario is that it occurs in waves of fluid-filled porosity. An idealized 1-d, constant

611 viscosity, model is employed here to explain why these waves form, after which the

612 model is extended to account for more complex rheology and multidimensional

613 effects.

614 14.5.1 Porosity Waves in Viscous Rock, Why?

615 For simplicity consider a constant volume devolatilization reaction that initiates at

616 depth within an otherwise uniform rock subject to some small background fluid flux

617 q0 (Fig. 14.5). Initially, since the reaction is isochoric it does not perturb the

618 background flux, but it does increase the porosity from f0 to f1 by reducing the

619 solid volume. This porosity change increases the permeability within the reacted
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620rocks by a factor of (f1/f0)
3 (for nf ¼ 3 in Eq. 14.17). From Darcy’s law, if fluid

621flux is constant then an increase in permeability must be compensated by a

622reduction in the fluid pressure gradient. Thus, an order of magnitude increase in

623permeability is sufficient to cause the fluid pressure gradient to relax to essentially

624hydrostatic values within the reacted rock. In turn, this relaxation gives rise to an

625effective pressure gradient such that pore fluids are overpressured above the center

626of the reacted zone and underpressured below it (Fig. 14.5). These pressure

627anomalies induce transient perturbations to the fluid flux above and below the

628reacted zone, but because the anomalies are antisymmetric there is no net drainage

629of fluid from the reacted layer as long as deformation is insignificant. However, the

630magnitude of the pressure anomalies must grow in proportion to the vertical extent

631of the reacted rocks with the result that deformation becomes inevitable. This

632deformation is manifest as compaction at the base of the reacted rocks and dilation

633at their top and has the effect of propagating the reaction-generated porosity upward

634(Fig. 14.6a). If the rate of propagation is high enough, then this mechanism can

635generate an isolated domain, or wave, of porosity that separates from the reaction

636front. Alternatively if the domain moves too slowly to detach from the source a

637wave train develops. The isolated wave and wave train correspond to steady-state

638solitary (Richter and McKenzie 1984; Barcilon and Richter 1986) and periodic

639(Sumita et al. 1996; Connolly and Podladchikov 1998) wave solutions of the
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/
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f

f
d

reaction front

dilation

compaction

reaction
front

heat source

hydrostatic gradient,
no fluid flow

lithostat,
no deformation

0

1

Fig. 14.5 Conceptual model of an isochoric metamorphic devolatilization reaction. The

unreacted rock has porosity f0 and conducts the flux q0. The reaction leaves a region of elevated

porosity f1 in its wake. This high porosity region has a permeability (f1/f0)
3 times greater than in

the unreacted rock (for nf ¼ 3 in Eq. 14.17). Because there are no dilational effects associated

with an isochoric reaction, the flux in the permeable reacted region must initially be the same as the

background flux. For this to be true Darcy’s law requires that the effective pressure gradient in the

reacted rocks must be Drg/(f1/f0)
3; thus a factor of 2 increase in porosity reduces the fluid

pressure gradient to within 12.5% of the hydrostatic gradient. As the vertical extent of the reacted

rocks becomes larger with time, this condition causes finite effective pressure anomalies that lead

to fluid expulsion. Non-isochoric reactions lead to a similar scenario, but with asymmetric pressure

anomalies (Connolly 1997) (Modified from Connolly (2010))
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640 equations that govern two-phase flow in an infinite viscous matrix (Fig. 14.6b and

641 Appendix). In the case of the solitary wave solution, the steady state consists of a

642 single isolated wave that propagates without dissipating. Because of its solitary

643 character, this steady state can plausibly be realized in nature and has been verified

644 in analog experiments (Scott et al. 1986). Additionally, numerical experiments have

645 shown that solitary waves are resistant to perturbations, e.g., if two waves collide

646 they regain their initial form after the collision (Richter and McKenzie 1984; Scott

647 and Stevenson 1986). In contrast, the periodic steady state consists of an infinite

t =1

t =3

t =1.5

t =2

D
ep

th

D
ep

th

D
ep

th

pePorosity PorosityPorosity

solitary wave

a Viscous solitary wave c Decompaction-weakening solitary wave ( /( g) 1/4)y ~b Viscous periodic waves

pe,min

pe,max

pe

y

Fig. 14.6 Time evolution of reaction-generated porosity and fluid overpressure, pf � p, profiles in
a viscous solid matrix. For each profile the baseline is indicated by a vertical dotted line that

corresponds to the background porosity,f0, or zero overpressure. In the symmetric viscous case (a),

the magnitude of the fluid pressure anomalies within the reaction-generated porosity is proportional

to the vertical extent of the high porosity. Thus, the anomalies grow as the reaction front advances

upward until they become large enough to cause significant deformation. Thereafter, compaction at

the base of the high porosity region squeezes fluid upward to the upper portion of the high porosity

region where it is accommodated by dilational deformation. This process has the effect of

propagating the reaction-generated porosity upward. The high porosity region detaches from the

source when the compaction rate at the base becomes comparable to the fluid production rate giving

rise to a solitary wave that propagates independently of its source (Richter and McKenzie 1984;

Connolly 1997). For the solitary wave to be stable it must propagate with speed vf > nfv0
(Appendix, Eq. 14.54). If the source is too weak to sustain a wave with this speed then a periodic

wave train forms that is unable to separate from the source (b). These waves dissipate if the source is

exhausted. If the fluid overpressures are large enough to induce embrittlement, decompaction

becomes viscoplastic (c), but the compaction remains viscous. In this case, the lower portion of

the solitary wave is unchanged from the symmetric viscous case, but hydrofracturing acts as

homeostat that regulates the overpressures in the upper portion of the wave. The scenarios depicted
here assume that the speed at which the reaction front propagates upward is not much greater than

the speed of fluid flow v0 through the unperturbed matrix, in the alternative, fast devolatilization

scenario (Sect. 14.5.3) waves detach from the source only after the cessation of devolatilization
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648wave train, which cannot be realized in nature. Thus, although a finite periodic

649wave train, in close proximity to the infinite steady state, may develop in response

650to a fluid source, once the source is exhausted the finite wave train will spread and

651dissipate to smooth flow.

65214.5.1.1 Why Don’t Solitary Waves Dissipate?

653It is natural to wonder why steady-state wave solutions exist at all. The origin of the

654phenomenon is the non-linear relation between porosity and permeability (e.g.,

655Eq. 14.17) that permits flow perturbations to grow into shocks that propagate more

656rapidly than the fluid flows by hydraulic diffusion (Spiegelman 1993). This phe-

657nomenon is most easily explained for a matrix with no strength (i.e., the classical

658metamorphic model) in which case fluid pressure is lithostatic and fluid flux and

659velocity are solely a function of porosity. Consider then a situation in which a

660region with a large flux (q1 ¼ v1f1) is overlain by a region with a small flux

661(q0 ¼ v0f0) and that the regions are, initially, connected by a region in which the

662porosity decreases upward (Fig. 14.7a). From Eqs. 14.9 to 14.17, in terms of the

663fluid velocity in the low porosity region, the fluid velocity at any other porosity is

v ¼ v0 f f0=ð Þnf�1: (14.20)

664At any point where the porosity gradient is finite and decreases in the direction of

665flow, the divergence of the flux (i.e., the difference between the flux into and out of

666an infinitesimal volume) is also finite. This divergence must be manifest by an

667increase in porosity, i.e., dilational strain, which leads to a steepening of the

668porosity gradient and, ultimately, the formation of a porosity shock (i.e., a self-

669propagating step in the porosity profile, Fig. 14.7b). Because the shock is moving

670more rapidly than the fluid in front of shock, in a reference frame that moves with

671the shock, the flux from the unperturbed matrix must be directed toward the shock.

672Consequently, as the shock propagates it gains fluid volume at the rate q1 � q0 from
673the low porosity region. As the porosity behind the shock is constant, conservation

674of the fluid volume requires that the shock velocity satisfies

vf ¼ q1 � q0ð Þ f1 � f0ð Þ= ; (14.21)

675or, making use of Eq. 14.20,

vf ¼ v0 1� f0 f1=ð Þnfð Þ f1 f0= � 1ð Þ= : (14.22)

676From Eq. 14.22, the smallest discrepancy between the velocity of the shock, and

677that of the fluid behind the shock, occurs in the limit that the shock is small, i.e.,

678f1 ! f0. The solitary porosity wave represents a steady state in which the finite

679strength of the matrix balances the tendency of fluid flow to steepen the porosity

680profile. Although the solitary wave is more complex than the simple shock, the
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681 solitary wave must have the same properties as the simple shock at the conditions

682 where it connects to the unperturbed porosity. At this point the fluid velocity is v0
683 and, from Eq. 14.22, the velocity of the simple shock is nfv0. Thus, a requirement

684 for the existence of steady-state solitary porosity waves is that they move ~ nf
685 times faster than the flow through the unperturbed matrix (Appendix, Eq. 14.54). As

686 in the simple shock, the solitary wave catches up with fluid flow through the

687 background porosity with the consequence that a geochemical signal from the

688 wave source may become diluted with time. The magnitude of this effect can be

689 quantified (Spiegelman and Elliott 1993), but it is insignificant for large amplitude

690 waves, i.e., fmax >> f0.

691 14.5.2 One-Dimensional Isothermal Waves: How Big,
692 How Fast, and How Much?

693 In the limit of a small perturbation to steady fluid flow through a uniform fluid-filled

694 porosity, compaction phenomena develop on a natural length scale known as the

695 viscous compaction length (McKenzie 1984). For a power-law viscous matrix this

696 scale (Appendix, Eq. 14.63) is

0

1

steady-state porosity shock
porosity

porosity

v q1 1= /

v=( / 0 0)n v
v1=( /1 0 0)n v

v q q=( )/( )1 0 0

v = /0 0q 0

v q0 0= / 0

distance

distance

v0

a

b

0

1

Fig. 14.7 Formation of a porosity shock during fluid flow through an inviscid matrix (i.e., the

classical metamorphic model). If the matrix is inviscid, then fluid pressure must be lithostatic and

fluid velocity is solely a function of porosity. Consequently, if porosity decreases in the direction

of flow, fluid in the high porosity direction catches up to the fluid in the low porosity region. This

process increases the porosity gradient until it becomes infinite. At which point, the resulting step

in the porosity profile corresponds to a porosity shock. In a reference frame that moves with the

shock, the fluid flux from the unperturbed matrix is negative; thus the shock must travel more

rapidly than the fluid behind it (Eq. 14.22). The minimum discrepancy between the fluid and shock

velocities occurs when the porosity behind the shock is only infinitesimally larger than the

background value. In this case, the velocity of the shock is nfv0, and corresponds to the minimum

velocity at which the solitary wave solution is stable in a matrix with a finite viscosity (Appendix,

Eq. 14.54)
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d ¼ f
nf�1

nsþ1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ns þ 1

� �ns cf

csAm Drgð Þns�1
;

nsþ1

s
(14.23)

697The compaction length is an estimate of the depth interval over which the matrix

698can sustain a non-lithostatic pressure gradient and, as such, it is unsurprising that it

699increases both with the strength (/ 1/A, Eq. 14.16) of the matrix and the ease with

700which fluid flows through it (/ cf/m). The speed of fluid flow at lithostatic fluid

701pressure through the unperturbed matrix, v0 � cff
nf�1

0 Drg m= (Eqs. 14.4 and 14.9),

702provides a natural scale for the speed of compaction processes. From this speed the

703compaction time scale (d/v0) is

t ¼ f
ns 1�nfð Þ

nsþ1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

cf Drgð Þ2
 !ns

=A
nsþ1

vuut ; (14.24)

704The compaction scales given by Eqs. 14.23 and 14.24 separate the porosity f0 of

705the fluid-rock aggregate from material properties (A, Dr, m, cf) that are, at least in
706principle, measurable quantities. In metamorphic problems this porosity is an

707unknown property of the initial state. The challenge presented by metamorphic

708fluid expulsion is to find observations that constrain the compaction scales and

709thereby this initial state. Because the compaction scales are formulated in terms of

710the initial state they represent, for ns > 1 and nf > 1, a lower bound on the length

711scale and an upper bound on the time scale for fluid expulsion.

712Given the uncertainties in the material properties involved in the compaction

713scales, it may be preferable to use observational constraints to infer the magnitudes

714of these scales. To this end, background flux q0, which is presumably less than the

715time-averaged metamorphic flux, provides a useful proxy for the hydraulic material

716properties. Taking the observations of Young and Rumble (1993), van Haren et al.

717(1996), and Graham et al. (1998) to be indicative of compaction time scales O(104) y

718at amphibolite facies conditions (T ¼ 773 � 923K), in conjunction with a plausible

719estimate for v0 ¼ q0/f0 of 10
�10 m/s, the compaction length (d ¼ tv0) consistent

720with these observations is 31 m. Clearly, it would be preferable to have direct

721observational constraints on the compaction length scale, as might be provided by

722variation in the pressures (O(2dDrg)) recorded by syn-metamorphic fluid inclusions

723or, as discussed subsequently, by the length scale (O(d)) for lateral fluid flow.

724However, taken at face value, an O(104) y time scale and an O(102) m length scale

725implies a viscous rheology roughly three orders of magnitude weaker than given by

726Eq. 14.14 for tectonic strain ratesO(10�15) s�1. A discrepancy of this magnitude can

727be explained if fluid expulsion is contemporaneous with pulses of intense tectonic

728deformation that lower the effective viscosity of the crust; an explanation consistent

729with a non-uniformitarian model of deformation and metamorphism (Oliver et al.

7302000; Dewey 2005; Ague and Baxter 2007).

731There is no fundamental principle that dictates a steady-state balance between

732metamorphic fluid production and transport, but for the range of conditions
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733 investigated by numerical simulations of metamorphic compaction-driven fluid

734 flow (Connolly 1997; Connolly 2010) such a balance does develop locally. A

735 requirement for this balance is that the time-averaged flux associated with the

736 passage of a wave must be greater than or equal to the vertically integrated

737 production, �q; because a wave with qe<�q would be unable to separate from its

738 source. This time-averaged flux is

qe ¼
vf
l
V1d
e (14.25)

739 where l and vf are the length and speed of the wave, and

V1d
e ¼

ðl 2=

�l 2=

f� f0ð Þdz (14.26)

740 is the fluid volume associated with the wave, which in one dimension has units of

741 length. If qe>�q, then the waves must be separated by a depth interval of

Dz ¼ l qe �q� 1=ð Þ

742 In 1-d numerical simulations, the transient dynamics of wave separation are such

743 that qe/�q is typically < 2 (Connolly 1997). This result suggests that, to a first

744 approximation, the properties of waves expected in metamorphic environments

745 can be predicted from the steady-state solitary wave solution to the compaction

746 equations (Fig. 14.8). The solitary wave solution does not exist for values of

747 qe/q0 < 2 (Appendix, Eq. 14.53), thus weak sources, or strong background fluxes,

748 will generate periodic waves that degenerate to uniform flow once the source is

749 exhausted. Periodic solutions to the compaction equations exist for all conditions;

750 however numerical (Richter and McKenzie 1984; Scott and Stevenson 1986;

751 Wiggins and Spiegelman 1995; Connolly 1997) and analog (Scott et al. 1986)

752 simulations suggest that the solitary wave solution is the stable solution whenever

753 it is a possible solution. The reason for this stability is unclear, but is most probably

754 related to the fact that the solitary wave is the more effective expulsion mechanism

755 and therefore maximizes the rate of dissipation of gravitational potential energy.

756 Because the matrix recovers to the background porosity asymptotically in a

757 steady-state solitary wave (for ns � 1), the wavelength of the true steady state is

758 infinite (Appendix, Eq. 14.59). For practical purposes, it is desirable to define an

759 effective wavelength, which defines the extent of the wave that includes the bulk of

760 the anomalous porosity. Two non-arbitrary measures of wavelength are the distance

761 between the points of minimum and maximum effective pressure (l) and twice

762 the second moment of the porosity distribution within the wave (l1, Fig. 14.8c),
763 the former value being roughly half the latter. Comparison of the excess volume

764 obtained by integrating the porosity over these intervals to the total excess volume

765 obtained by integrating over infinite space (dashed curve, Fig. 14.8d) shows that,
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766 even at the minimum qe for solitary wave stability, >80% of the porosity of a wave

767 occurs within a distance of 	 l/2 from its center. Accordingly, l is adopted here as

768 the measure of wavelength rather than the more conservative measure l1. The
769 solitary wave period, l/vf, is the time required for a wave to travel its wavelength.

770 To illustrate the quantitative implications of the solitary wave solution, consider

771 the initial condition f0 ¼ 10�4, q0 ¼ 10�14 m/s, t ¼ 10 ky, and d ¼ 31 m, which,

772 as discussed previously, is chosen to be consistent with the timing of fluid-rock

773 interaction during amphibolite facies metamorphism (Young and Rumble 1993;

774 van Haren et al. 1996; and Graham et al. 1998). From this condition, and the

775 properties of the solitary wave steady state (Fig. 14.8), the waves required to

776 conduct a typical metamorphic flux �q¼ 10�12 m/s (i.e., qe/q0 ¼ �q/q0 ¼ 102) have

777 l ¼ 200 m, fmax ¼ 1.0·10�3, travel at vf ¼ 39 m/ky, and are associated with fluid

778 pressure anomalies of 1.4 MPa. These pressure anomalies are small enough that a

779 viscous dilational mechanism for wave propagation is plausible. The sensitivity of

780 this result is demonstrated by considering the effect increasing �q to 10�10 m/s,

781 which is consistent with the rate for Dalradian regional metamorphism inferred by

782 Ague and Baxter 2007. For this increased flux, l ¼ 320 m, fmax ¼ 55·10�3,

783 vf ¼ 110 m/ky, and pmax ¼ 2.9 MPa; the most prominent difference being the

784 large increase in porosity.

785 14.5.3 Fast Versus Slow Devolatilization and Complex Fluid
786 Sources

787 The knife-edge sharp, constant volume, devolatilization reaction used so far for

788 purposes of illustration may seem unrealistic, but it captures the essence of the fluid

789 expulsion problem, which is not how fluid is released, but rather how it escapes. The

790 key to predicting the waves that are likely to evolve in response to more complex

791 devolatilization processes is to obtain plausible estimates for both the background

792 flux that the system is capable of accommodating without appreciable dilational

793 deformation and the excess flux generated by devolatilization that must be

794 accommodated by porosity waves.

795 The relationships between porosity wave speed and excess flux (Fig. 14.8a) and

796 between excess flux and wave amplitude (Fig. 14.8b) indicate that extraordinarily

797 large porosities are required to generate waves that travel more than two orders of

798 magnitude faster than the speed of the fluid flow in the unperturbed matrix. As the

799 analytical formulation ignores large porosity effects that lead to a further weaken-

800 ing of the dependence of speed on amplitude, it is reasonable to conclude that if

801 natural porosity waves exist, then they do not propagate at speeds >> v0. Given
802 that a porosity wave can only escape from a devolatilization reaction front if it

803 travels faster than the front, these considerations imply that the wave nucleation

804 scenario outlined in Sect. 14.5.1 represents the limiting case of slow devolati-

805 lization, wherein the devolatilization front propagates at speeds that are not much
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806greater than v0. In the alternative, fast devolatilization scenario, devolatilization

807generates a high porosity source region. Porosity waves cannot escape from this

808source until lithological heterogeneity or geodynamic factors hinder the advance of

809the devolatilization front. If it is assumed that the material properties of the reacted

810and unreacted rocks do not differ significantly, then the porosity increase within the

811source region decreases the time scale for intra-source fluid expulsion (Eq. 14.24).

812This increase in efficiency has the consequence that the excess flux delivered to the

813upper boundary of the source region is independent of the processes in the

814unreacted rocks, which compact on a longer time scale. If the porosity, f1, within

815the source is >> f0, then this excess flux is ~ q0 f1 f0=ð Þnfand the waves that

816ultimately evolve from the source can be expected to carry a flux that is greater

817than, but comparable to this flux. Spiegelman (1993) demonstrated that in the waves

818which nucleate at the boundary between the source and unreacted rocks are not true

819solitary waves. However, for large porosity contrasts, i.e., f1 >> f0, the distinc-

820tion is not important and is diminished still further in models that account for the

821elastic compressibility of the fluid (Connolly and Podladchikov 1998).

822The dehydration model presented earlier suggests that in nature devolatilization

823in nature may occur by many reactions simultaneously over depth intervals of

824several kilometers (Fig. 14.3). The increase in porosity caused by reactions

825increases the compaction length within such an interval, an effect that will tend

826to blur the influence of individual reactions. Thus the characteristics of waves that

827would evolve above such an interval can be anticipated by equating the excess flux

828to either the vertically integrated fluid production in the slow devolatilization limit,

829or to q0 f1 f0=ð Þnf in the fast limit.

830A reaction with a finite isobaric volume change leads to a coupling between

831devolatilization kinetics, temperature, and fluid pressure, but this coupling does not

832hinder the evolution of porosity waves (Connolly 1997). Finite volume change

833reactions also influence the initial pressure distribution, but regardless of this

834distribution, deformation will cause the system to evolve toward a state in which

835effective pressures are low or negative at the top of the reacted region. For example,

836a reaction with a positive (isobaric) volume change may initially generate fluid

837overpressure throughout the reacted rocks, with the result that hydraulic diffusion

838drives fluid both upward and downward from the reaction front. Thus the flux

839within the reacted rocks is not constrained by symmetry. However, provided the

840permeability within the reacted rocks is much higher than in the surroundings, the

841fluid pressure gradient will approach the hydrostatic value. Thus, the greatest

842overpressures will occur at the top of the reacted column. This distribution must

843lead to higher rates of dilational deformation at the top of the column and,

844ultimately, underpressured porosity at depth.

845Despite the complexities that may influence the kinetics of individual devolati-

846lization reactions, there is reason to believe that overall rates of metamorphic

847devolatilization do not differ greatly from those predicted by equilibrium models.

848Specifically, if rocks cannot sustain large fluid overpressures then the thermal

849overstepping of the equilibrium conditions is likely to be the primary manifestation

850of disequilibrium. As reaction kinetics are often an exponential function of
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851 temperature (Rubie and Thompson 1985), moderate thermal overstepping should

852 accelerate kinetics to the point at which they become limited by the rate of energy

853 input as would be the case for an equilibrium system. This logic assumes that rocks

854 cannot support large elastic stresses. That this assumption is not a universal truth

855 has been demonstrated in experiments on reactive systems in which a fluid inclu-

856 sion achieves a non-hydrostatic equilibrium with its surroundings (Kerschhofer

857 et al. 1998; Mosenfelder et al. 2000; Milke et al. 2009). Vrijmoed et al. (Vrijmoed

858 et al. 2009) argue that strength contrasts in rocks are capable of generating large

859 scale fluid inclusions that sustain pressures far above the lithostatic load. An effect

860 of this nature has been invoked to explain the seemingly metastable persistence of

861 volatile-bearing rocks (Padron-Navarta et al. 2011).

862 14.5.4 Multidimensional Viscous Porosity Waves

863 The 3-d expression of the 1-d porosity wave just discussed corresponds to a sill-like

864 structure (Fig. 14.9b). However in two and three dimensions both numerical (Scott

865 and Stevenson 1986; Stevenson 1989; Wiggins and Spiegelman 1995) and analyti-

866 cal (Barcilon and Lovera 1989) models show that 1-d solitary waves are unstable

867 with respect to circular and spherical solitary waves. This instability is

868 demonstrated numerically for fluid flow from a high porosity region, an analogy

869 for a metamorphic fluid source, by introducing random noise into the initial

870 porosity distribution (Fig. 14.9a). Although the 2-d waves (Fig. 14.9c) appear

871 significantly different from the 1-d waves (Fig. 14.9b) that evolve from the initial

872 porosity distribution without noise, it emerges that their properties are well

873 approximated by applying radial symmetry to the porosity distribution of the 1-d

874 solitary wave solution (Connolly and Podladchikov 2007). Thus, 1-d and 2-d

875 solitary waves have an essentially equivalent relation between amplitude and

876 speed. Although untested, it is assumed that the same approximation can be made

877 in 3-d by applying spherical symmetry to the 1-d porosity distribution. That the 2-d

878 approximation is nearly exact in the limit that the maximum porosity is > 10 f0 is

879 verified by comparing the relationship between wave velocity and amplitude in

880 analytic (Fig. 14.8) and numerical results (Fig. 14.9). The reason for the increased

881 speed of 2-d waves compared to 1-d waves emanating from a comparable source is

882 primarily the effect of a weak spatial focusing of the source flux in the 2-d case. The

883 most important distinction between planar and circular waves is the existence of

884 strong lateral pressure gradients associated with the dipolar pressure field of

885 circular waves (Figs. 14.9d and 14.10a). Thus, in contrast to the unidirectional

886 fluid flow of planar waves, fluid flow in circular waves is characterized by a circular

887 pattern in which lateral fluxes are of comparable magnitude (Scott 1988; Connolly

888 2010). The circular pattern develops in the reference frame of the wave

889 (Fig. 14.10a), but, in the reference frame of the solid matrix, passage of a wave is

890 marked first by fluxes with a lateral component away from the vertical axis of the

891 wave, followed by a period in which the lateral component is directed toward the

892 axis. During this oscillation, the vertical component of the flux is always upward.
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89314.5.5 Porosity Waves in an Upward Strengthening Crust

894The preceding discussion has ignored the temperature dependence of the viscous

895rheology, which is responsible for the upward strengthening of the lower crust.

896From Eq. 14.12, the compaction length and time scales increase exponentially with

897decreasing temperature towards the Earth’s surface, increasing by a factor of

898(ns + 1)�1, for a decrease in depth comparable to the viscous e-fold length lA
899(Eq. 14.15, Fig. 14.1). This effect makes achievement of true steady-state waves

900a mathematical impossibility because the compaction scales vary between the top

901and bottom of a wave (Connolly 1997). The strength of this variation can be

902assessed by comparing the steady-state wavelength l to lA. If l << lA, then the

903rheological variation within the wave is weak and a quasi-steady state may arise

904such that at any point in time the properties of the wave closely approximate the

Porosity,   = 0
/ 10

t
max 0

t = 3.3
max 0/ 50

t = 3.3
/ 100max 0 5 2.5

2.0

1.5

1

0

1

6

4

2
0 20 40 t/

10

/ ,   = 20 t

pe/( g)

v /v0max 0/ ,,

10

a b c d

Fig. 14.9 Two-dimensional numerical simulations of porosity waves initiating from high porosity

horizons that differ only in that in one case random noise is added to the initial porosity

distribution. The simulations are for a Newtonian matrix (ns ¼ 1, nf ¼ 3). If the initial porosity

is perfectly smooth, 1-d sill-like waves nucleate from the source (b). However, if white noise is

added to the initial porosity distribution as depicted in (a), the 1-d waves become unstable with

respect to circular 2-d waves (c). The 2-d waves cause spatial focusing of the source flux.

Consequently the 2-d waves have larger amplitudes and higher velocities than 1-d waves initiating

from a similar source. Numerical simulations have also shown that the stable viscous solitary wave

geometry in 3-d is spherical (Wiggins and Spiegelman 1995). (d) A numerical simulation of a 2-d

wave nucleated from a small circular source region, illustrating the dipolar effective pressure field

and the short duration of transient effects (i.e., the wave has essentially reached a steady state by

t/t ~ 2). Wave properties along the vertical axis of 2-d waves, with fmax/f0 > 10, are indistin-

guishable from those predicted for 1-d waves with the same amplitude (Connolly and

Podladchikov 2007)
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905 steady state. In this regime, waves will slow and spread as they propagate upward.

906 In the limit l ! lA this quasi-steady state becomes infeasible because compaction

907 within a wave occurs much more rapidly than decompaction. At this point, the local

908 compaction length scale becomes meaningless for compaction processes in the

909 vertical direction, and lA determines the vertical length scale (Connolly and

910 Podladchikov 1998). In the absence of strong lateral thermal gradients, as assumed

911 here, the local compaction length dictates the scale of lateral processes, thus,

overpressure ( pe)pe) porosityoverpressure ( porosity

~ R

a symmetric yielding b decompaction-weakening

background value
weak positive
strong positive
strong negative
weak negative

Fig. 14.10 Illustration of the scaling arguments used to relate the solitary wave solution in the

symmetric viscous case (a) to the solitary waves that develop in a matrix with decompaction

weakening (b). Colors indicate regions of the matrix that are characterized by weakly and strongly

depressed or elevated values of overpressure and porosity. Approximate fluid flow paths, relative

to a reference frame that moves with the porosity wave, are shown in the porosity map. The true

paths do not close because the wave is subject to a small fluid flux from the background porosity

(Fig. 14.7). This discrepancy is insignificant in large amplitude waves. In the reference frame of

the solid, the vertical component of compaction driven fluxes is upward. In the symmetric case, the

pressure distribution associated with a porosity wave is an antisymmetric dipole that induces

balanced fluid circulation so the wave has no tendency to gain or lose mass (Fig. 14.11d). With

decompaction weakening, fluid underpressures and compaction develop on the length scale d as in
the symmetric viscous case, whereas decompaction and overpressure develop on the shorter length

scale dR. Thus, decompaction generates an elevated region of porosity and pressure analogous to

the upper hemisphere of the symmetric viscous case, but on this shorter length scale. Restoration

of this elevated porosity occurs on the length scale d, which causes the compacting portion of the

wave to develop a semi-ellipsoidal geometry. Fluid underpressure in the compacting region

relaxes on the length scale d causing compaction of the matrix in advance of the wave as well

as in laterally adjacent portions of the matrix that have not been perturbed by decompaction. The

asymmetric pressure distribution causes unbalanced fluid circulation, with the result that the wave

gains mass from the matrix as it propagates, this imbalance is indicated schematically by the

outermost, unclosed, flow path
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912thermal activation gives rise to an intrinsic anisotropy to compaction-driven

913fluid flow.

914The consequences of thermal activation for the 2- and 3-d viscous solitary wave

915solutions is demonstrated by a numerical experiment in which upward propagating

916waves are induced from a circular source (Fig. 14.11a) . At the initial depth, the

917waves are small in comparison to lA and approximate the circular 2-d steady state.

918As the waves migrate upward their wavelength becomes comparable to lA and they

919flatten to ellipsoidal structures with the horizontal length scale controlled by the

920local value of d and the vertical length scale limited by lA. A second numerical

initial perturbation
= 10/ 0

Circular perturbation
porosity at = 22.5

/ 10
t 0

max 0

0 = 0.1 lA

4 (40 )lA 0

= 5.5 lA

= 0.1 lA

2.8 (28 )lA 0

= 1.7 lA

Sinusoidal perturbation
porosity at   = 0.5

/ 50
t 0

max 0

initial perturbation
= 10/ 0

Barrier

a

b

Fig. 14.11 Two-dimensional numerical simulations of viscous porosity waves in a rock matrix

that strengthens upward due to thermal activation on the length scale lA (Fig. 14.1). This effect

causes the local compaction length d to increase upward from its initial value d0; the simulations

are for Newtonian rheology (ns ¼ nf ¼ 3). (a) If the source is at depth such that d0 < lA, the
quasi-steady state waves mimic the circular viscous steady-state, but spread as they rise upward

until their wavelength approaches lA at which point the waves flatten to oblate ellipsoids with

vertical length scale lA and horizontal length scale d. The wave velocities decay exponentially

upward on the length scale lA. (b) Waves are generated from a high porosity layer with a sinusoidal

upper boundary at depth such that d0 < lA. This simulation demonstrates that the effect of thermal

activation is to restabilize 1-d solitary waves when wavelength approaches lA (Modified from

Connolly and Podladchikov (1998))
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921 experiment, in which waves initiating from a horizontal source are destabilized by a

922 perturbation, shows that the effect of thermal activation is to restabilize 1-d planar

923 waves (Fig. 14.11b). To show that this process is relevant to crustal fluid flow it is

924 necessary to show that the wavelength of quasi-steady state waves will approach the

925 lA at the brittle-ductile transition (Fig. 14.1). This cannot be established from wave

926 properties expressed as a function of excess flux because this flux decays as waves

927 slow. However, quasi-steady state waves may conserve the excess fluid volume

Ve ¼
ð ð ð

f� f0ð Þdxdydz (14.27)

928 and therefore wave evolution can be predicted as a function of Ve (Fig. 14.12)

929 provided l < lA. There are two complications in such predictions. The more

930 difficult is that if waves evolve from 3-d structures, it is necessary to account for

931 lateral variations in porosity. To avoid this complexity, the waves are approximated

932 here as 1-dimensional. This approximation has the consequence that waves

933 lengthen more rapidly than they would if 3-d geometry were taken into consider-

934 ation. The second complication is that the dimensionless excess volume has

935 a minimum at V1d
e =d=f0~8 (Fig 14.13a), thus a wave that initiates with

936 V1d
e =d=f0> 8 and broadens upward due to thermal activation cannot increase its

937 wavelength above lmax ~ 17 d, the wavelength at V1d
e =d=f0~ 8, and must decay to

938 the dissipative periodic solution as it propagates above this point, i.e., at vf � 3.5

939 v0, slightly above the minimum velocity at which the solitary solution is stable.
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Fig. 14.12 Steady-state 1-d solitary wave properties in a power law (ns ¼ nf ¼ 3) viscous

matrix as a function of the excess volume (V1d
e , Eq. 14.26). These properties can be used to predict

quasi-steady state wave evolution in upward strengthening rocks as a function of the local

compaction length. See text for discussion
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940Returning to the amphibolite-facies example (Sect. 14.5.2), if thermal activation is

941the sole source of variability in the compaction scales, then from Eqs. 14.12, 14.23,

942and, 14.24, as a function of temperature the compaction scales can be expressed as

d ¼ d0 exp
Q

ns þ 1

T0 � T

TT0


 �
(14.28)

943and

t ¼ t0 exp
Q

ns þ 1

T0 � T

TT0


 �
; (14.29)
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Fig. 14.13 Two-dimensional numerical simulation of fluid flow through a matrix with

decompaction weakening (R ¼ 0.03) as it evolves from a layer with elevated porosity of thickness

60 d that is bounded from above and below by regions with an order of magnitude lower porosity.

Upper panels show porosity in the uppermost portion of the layer and in the overlying region.

Lower panels show the corresponding distribution of fluid overpressure. Initial waves (t ¼ t/2)
form with characteristic spacing identical to the viscous compaction length and leave a trail of

slightly elevated porosity, flanked by a fluid depleted matrix. Depletion of the matrix reduces the

local compaction length scale for the initiation of subsequent waves (t ¼ t). These waves collect
within the trails of the initial waves, so that at 30–40 d from the initial obstruction, flow is again

channelized on the length scale d. By analogy with the 3-d viscous case (Wiggins and Spiegelman

1995), it is presumed that the 3-d expression of the channels would be pipe-like structures.

However, in the presence of far field stress, kinematic effects would flatten the tubes in the

direction of the minimum horizontal stress (Modified from Connolly and Podladchikov (2007))
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944 where T0 is the temperature at which the scales are d0 and t0. For Q ¼ 250 kJ/mol,

945 ns ¼ 3, d0 ¼ 31 m, and t0 ¼ 10 ky, and estimating the temperature of the amphib-

946 olite facies metamorphism as T0 ¼ 848 K; then the initial length and time scales

947 increase to 780 m and 250 ky at the temperature of the brittle-ductile transition

948 (~ 623 K),. For qe/q0 ¼ �q/q0 ¼ 102, from the initial wave speed vf/v0 ¼ 12.2

949 (Fig. 14.8a), V1d
e =d0=f0¼ 49 (Fig. 14.12a) and, if V1d

e and f0 are constant, then at

950 the brittle-ductile transition, the V1d
e =d1=f0 ¼ V1d

e =d0=f0

� �
d0=d1ð Þ ¼ 2.0. This

951 value is below the minimum in V1d
e =d=f0, so in this case the wave would reach

952 lmax below the brittle-ductile transition, at which point it would begin to evolve

953 toward the periodic wave solution. For the case qe/q0¼ �q/q0 ¼ 104, the initial wave

954 has vf/v0 ¼ 36 and V1d
e =d0=f0 ¼ 3400, so at the brittle-ductile transition

955 V1d
e =d1=f0¼ 140. From this value of V1d

e =d=f0 (Fig. 14.12), the quasi-steady

956 state wave has vf/v0 ¼ 18, l/d1 ¼ 7.2, fmax/f0 ¼ 28, and qe/q0 ¼ 67. As this

957 wavelength (5,600 m) exceeds lA it may be concluded that the flow processes

958 would cease to be controlled by the viscous steady-state at greater depth. For this

959 particular case, the overpressure associated with the wave (~50 MPa) near the

960 brittle-ductile transition might be sufficient to provoke a change from viscous to

961 plastic dilational deformation. In the absence of such a change, viscous waves are

962 expected to die at depth, with smaller waves dying at greater depth. Death, in this

963 context, means simply that the behavior of the system cannot be predicted in terms

964 of the steady state. What can be predicted is that in its death throes a viscous wave

965 will produce a sub-horizontal fluid-rich domain, with thickness comparable to lA
966 beneath the brittle-ductile transition.

967 14.5.6 Hydrofracture and Decompaction-Weakening

968 The viscous porosity wave mechanism requires overpressures of the same magni-

969 tude as the effective pressures that cause compaction (~lDrg/2). If these

970 overpressures are greater than rock tensile strength, they induce plastic dilational

971 strain by macroscopic or microscopic hydrofracturing, the latter manifestation

972 being favored at high temperature (Hill 1950). Returning to the schematic devolati-

973 lization scenario considered in the viscous case (Fig. 14.6a), the greatest

974 overpressures must occur at the top of the reacted horizon, thus repeated

975 hydrofracturing will propagate porosity into the overlying rocks. Provided the

976 hydrofracturing occurs on a length scale that is small in comparison to the viscous

977 compaction length d, the rate of propagation is limited by the rate at which

978 compaction at depth supplies fluid to the hydrofracture front. Thus, in 1-d there is

979 a steady state in which fluid driven upward through a porous domain, by viscous

980 compaction at depth, is accommodated by hydrofracturing at overpressures that are

981 much smaller than the effective pressures required for compaction (Fig. 14.6c). The

982 difficulty in quantifying this steady-state is that it is dependent on details of the

983 hydrofracture mechanism (Rozhko et al. 2007). An approximation that circumvents
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984this complexity is to assume that the effect of plasticity is to reduce the effective

985viscosity of rocks undergoing decompaction. The assumption is justified if

986hydrofracture and viscous dilation occur in tandem, because the effective behavior

987is then viscous; but characterizing this behavior by a single parameter is ad-hoc. For

988present purposes, the parameter chosen to characterize a relative weakening in

989decompaction is

R ¼
ffiffiffiffiffiffiffiffiffiffiffi
A Ad=nsþ1

p

990where Ad is the coefficient of viscous flow during decompaction, i.e., R < 1. The

991reason for using R rather than Ad to characterize decompaction-weakening is that R
992is the proportionality constant that relates the length scales for decompaction and

993compaction, i.e., the decompaction length is dd ¼ Rd. If decompaction weakening

994maintains fluid overpressures near the tensile strength sy, then R is related to sy by

sy ¼ ddDrg ¼ RdDrg: (14.30)

995Equation 14.30 results in a parameterization that is consistent with the expecta-

996tion that overpressure is limited by the rock tensile strength, but it does not justify

997the formulation.

998In the 1-d case, the existence of a solitary wave solution for a matrix with

999decompaction-weakening requires only that it is possible to connect the viscous

1000solitary wave solution for the decompacting region, with length scale Rd, with the

1001viscous solution for the compacting region, with length scale d. Because the

1002relationship between wave velocity and amplitude is independent of the coefficient

1003of viscous flow (Eq. 14.55, Appendix), this connection is possible in 1-d and

1004identical to the viscous solitary wave solution except that the overpressured portion

1005of the wave scales as Rd rather than d. Compaction is the rate limiting process for

1006the combined solution, with the result that the time scale for the steady state is

1007unchanged from the viscous case. Moreover, for strong manifestations of plasticity,

1008i.e., R << 1, the extent of the overpressured portion of the wave is insignificant,

1009with the result that the wave solution for decompaction-weakening is well

1010approximated by the lower half of the viscous solution. In numerical simulations,

1011such waves appear as self-propagating fluid compartments within which fluid

1012pressure rises along a hydrostatic gradient to pressures slightly above the lithostat

1013(Connolly and Podladchikov 2000).

1014Decompaction-weakening results in a rheology in which rocks weaken in the

1015direction of compaction-driven flow. This effect is the opposite of thermal activa-

1016tion in the viscous case, which leads to flattening of porosity waves (Fig. 14.11).

1017Thus, decompaction-weakening causes waves to elongate in the direction of flow

1018inducing channelization (Fig. 14.13). The channels are generated by tube-like

1019porosity waves of extraordinary amplitude and speed that leave a trail of incom-

1020pletely compacted porosity in their wake. These trails act as preferential pathways

1021for subsequent fluid flow, and develop initially with spacing ~ d and width ~ Rd, a
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1022 geometry that amplifies the source fluid flux by a factor of ~4/R2. This pattern of

1023 fluid flow corresponds to that inferred in greenschist-facies rocks by Skelton et al

1024 (2000), who propose that the flow was episodic and propagated by microcracking.

1025 Similar flow patterns have also been inferred in asthenospheric systems (Jagoutz

1026 et al. 2006; Bouilhol et al. 2009; Bouilhol et al. 2011).

1027 The tube-like waves are propagated by a region of overpressure that decompacts

1028 the matrix (Fig. 14.13). A much larger region of underpressure, beneath the

1029 overpressured region, is necessary for compaction to expel fluid at the rate required

1030 to fill the porosity created by decompaction. As compaction occurs, on the scale d
1031 and decompaction on the scale Rd, the asymmetric pressure distribution induces

1032 unbalanced fluid circulation (Fig. 14.10b). This imbalance causes the waves to gain

1033 fluid by draining the porosity in the surrounding matrix. The gain in fluid obviates a

1034 steady state, but the speed-amplitude relation of the waves is essentially identical to

1035 the symmetric viscous case suggesting a quasi-steady state. This quasi-steady state

1036 can be explained by observing that if decompaction is much more rapid than

1037 compaction, then the decompacting region will develop with the characteristics of

1038 the upper hemisphere of the 2- or 3-d viscous solution on the length scale Rd.
1039 Compaction restores the porosity generated by decompaction on the length scale d,
1040 thus the compacting region will approximate the lower half of a prolate ellipsoid

1041 (Fig. 14.10b). The associated fluid volume is R2V0
e 2= , where V0

e is the fluid volume

1042 of the 3-d spherical viscous solution (Eq. 14.27), which is approximated by

1043 applying spherical symmetry to the porosity distribution of the 1-d viscous solution.

1044 For R in the range 101/2–103 this model has been verified by comparison with

1045 numerical simulations for linear viscous rheology (ns ¼ 1, Connolly and

1046 Podladchikov 2007). These simulations also show that, in the absence of thermal

1047 effects, wave amplitude grows as

@fmax @t= � f0 tR3=4
� �.

: (14.31)

1048 and that the speed-amplitude relation of waves is essentially identical to the steady

1049 solitary wave solution in a viscous matrix without decompaction-weakening if the

1050 simple viscous matrix is characterized by the ARnsþ1. This latter result implies that

1051 the effective time-scale for compaction-driven fluid flow in a decompaction-

1052 weakening matrix is dictated by the viscous response of the weak, overpressured,

1053 rocks, i.e., the effective time-scale is

td � tR: (14.32)

1054 Given the ad-hoc nature of the parameterization further quantification is unwar-

1055 ranted, but the role of plastic yielding should increase with falling temperature

1056 because d is strongly dependent on temperature, but yield strength is weakly

1057 temperature dependent. Thus, a decompaction-weakening rheology causes

1058 compaction-driven fluid flow to become increasingly focused towards the surface,

1059 the antithesis of the behavior of the symmetric viscous case.
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1060Decompaction weakening causes fluid flow within a horizontal source region to

1061be focused into tube-like channels of width Rd with a characteristic spacing d. The
1062properties of the waves responsible for channel formation can be predicted as a

1063function of R and fluid production within the source region if, as before, a balance

1064between fluid transport and production is assumed. The symmetry of the quasi-

1065steady state is such that for R << 1 the rate of fluid transport, by a wave, is

1066Qe � Q0
eR

2, where Q0
e ¼ V0

e vf=l=2 is half the rate for the viscous rheology

1067(R ¼ 1). Approximating the area drained by a channel as a square of area 4d2,
1068the vertically-integrated fluid production rate within the source region isQs � 4�qd2.
1069Equating Qe and Qs, rearranging the result, and dividing through by q0 to make the

1070result non-dimensional, yields

Q0
e

d2q0
� 4�q

R2q0
: (14.33)

1071Given Q0
e from Eq. 14.33, wave speed, amplitude, and wavelength, which are

1072independent of R, are recovered from the properties of the steady-state (Fig. 14.14).

1073In the absence of experimental or theoretical constraints, field evidence of

1074channelized fluid flow can be used to infer the R values necessary to explain
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Fig. 14.14 Quasi-steady state solitary wave properties (for ns ¼ nf ¼ 3) for a decompaction-

weakening viscous rheology as a function ofQ0
e . For R << 1, the volumetric rate of fluid transport

by a wave is Qe � Q0
eR

2. Equating this rate to the source flux that is focused into the wave,

Qs � 4�qd2, yields the value of Q0
e d2q0
�

(i.e., 4�q R2q0
�

). This value is appropriate to predict the

properties of the 3-d tube-like waves that would nucleate from a dehydrating horizon
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1075 channelization by decompaction weakening. Channelization patterns are difficult to

1076 discern at low metamorphic grades, but at higher temperatures patterns associated

1077 incipient charnockitization (Stahle et al. 1987) and pervasive melt migration

1078 (Jagoutz et al. 2006; Bouilhol et al. 2009; Bouilhol et al. 2011) are broadly

1079 consistent with R ~ O(10�1). Adopting this value for the scales of the amphibolite

1080 facies example considered previously (d ¼ 31 m and t ¼ 10 ky), a miniscule

1081 flux perturbation of �q q0= ¼ 2 (Q0
e/d

2/q0 ¼ 800) is adequate to generate a wave

1082 that travels with speed vf ¼ 51 d/t ¼ 160 m/ky, vertical dimension l ¼ 6d ¼ 190

1083 m, horizontal dimension Rl ¼ 19 m, fmax ¼ 0.7, pmax ¼ 4 MPa (~lDrg), and
1084 pmin ¼ �0.4 MPa (~RlDrg). Although the amplitude of this wave violates the

1085 small-porosity approximation used to derive the steady-state properties, it

1086 demonstrates the extraordinary efficacy of 3-d focusing. In nature, such instabilities

1087 would be likely to provoke an alternative transport mechanism such as fracture-

1088 controlled flow.

1089 14.6 Adding Details

1090 The suggestion that lower crustal fluid flow is accomplished by the propagation of

1091 fluid-rich domains that correspond to some esoteric solution of the compaction

1092 equations cries for evidence and provokes the suspicion in the minds of field-based

1093 geologists that they are being sold a geological analog to the proverbial spherical

1094 cow of theoretical physics. The model is the mathematical consequence of a set of

1095 essential assumptions that are, at least individually, accepted in geoscience; the

1096 purpose of this Chapter is to draw attention to this consequence rather than to prove

1097 that it corresponds to reality. If there is a spherical cow to be found, then it must be

1098 lurking among these assumptions. The assumptions are: (1) that when a fluid is

1099 present its pressure is near lithostatic; (2) that flow is governed by Darcy’s law; (3)

1100 that permeability is continuous and a strong function of connected porosity; and (4)

1101 that compaction occurs by a viscous mechanism (e.g., dislocation or pressure-

1102 solution creep) in response to effective pressure. In rejecting the model, it behooves

1103 the skeptic to decide which of these assumptions is false. The fourth assumption is

1104 treacherous at small porosities because omnipresent elastic mechanisms may limit

1105 viscous response (Connolly and Podladchikov 1998; Bercovici et al. 2001). How-

1106 ever, if these assumptions are accepted, the consequence is that fluid flow must be

1107 episodic and accompanied by oscillations in fluid pressure, even in an idealized

1108 homogeneous crust perturbed by an idealized devolatilization reaction. As a pre-

1109 diction, this result is mundane because there is no geologic evidence to the contrary;

1110 its value is only that it offers a consistent explanation for such phenomena that, in

1111 principle, can be tested against observation. The purpose of modeling is not to

1112 emulate the complexity of nature, rather to explain it. For this reason, the models

1113 presented here sacrifice detail, but it is undeniable that the details of natural systems

1114 will influence fluid flow. A comprehensive discussion of this influence is
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1115impractical; however, it is appropriate to consider some circumstances when the

1116effect of such details can be neglected or anticipated.

111714.6.1 Large-Scale Lateral Fluid Flow

1118Metamorphic devolatilization reactions have the capacity to produce high porosity

1119layers, within which the compaction length, d1, may be orders of magnitude greater

1120than it is in the surrounding rocks. In principle such a layer has the capacity to

1121conduct lateral fluxes on the length scale d1; however, in the absence of external

1122forcing, the pressure gradients responsible for lateral fluxes are limited by the

1123spacing of the porosity waves that effect drainage through the low porosity sur-

1124roundings. This spacing is dictated by the compaction length in the unperturbed

1125matrix, which therefore determines the length scale for lateral fluid flow (Figs. 14.9

1126and 14.13). Therefore, it seems probable that large-scale lateral fluid flow inferred

1127from metamorphic field studies (e.g., Ferry and Gerdes 1998; Skelton 1996; Wing

1128and Ferry 2007) is induced by external perturbations, such as drainage caused by

1129tectonically-induced dilatant shear zones (Sibson 1992) or mean stress variations

1130caused by folding (Schmalholz and Podladchikov 1999; Mancktelow 2008). The

1131strength of these perturbations increases rock strength, thus they are likely to

1132become important under the same conditions that embrittlement may cause a

1133decompaction-weakening rheology (Sect. 14.5.6). Because decompaction weaken-

1134ing reduces the time-scale for dynamic drainage by porosity waves through the

1135unperturbed matrix, the influence of an externally imposed drain will be dependent

1136on the relative magnitudes of the time scale for within-layer flow

t1 ¼ t0
f0

f1

� �
f

ns nf�1ð Þ
nsþ1

0 (14.34)

1137and the effective time scale tdw (Eq. 14.32) for dynamic drainage by decompaction

1138weakening, such that the process that operates on the shorter time-scale will

1139dominate (Fig. 14.15). For the case t1 ¼ td, numerical simulation of fluid flow

1140caused by the intersection of a permeable fracture zone with a metamorphic

1141reaction front (Fig. 14.5 of Connolly 2010) shows that lateral flow occurs toward

1142the fracture zone on the length scale d1 for t < td, but occurs only on the shorter

1143length scale d0, and is independent of the fracture zone, at t > td. It is of course
1144possible that a reaction generates a highly permeable layer that is sealed from above

1145by a different, impermeable, lithology. In this case, the lateral flow can occur on the

1146length scale d1. As evidence for large-scale lateral flow appears to come primarily

1147from low and moderate grade metamorphic rocks, a more probable explanation for

1148the phenomenon is that the flow occurs at conditions such that d < lA. Under such
1149conditions (Fig. 14.11), the vertical scale for compaction driven flow is lA, but the
1150horizontal length scale is the local value of d, which increases exponentially with

1151falling temperature.
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1152 14.6.2 Lithological Heterogeneity

1153 There are two limiting cases for lithological heterogeneity. The trivial case is that

1154 the heterogeneity occurs on a scale >> d. In this case (Fig. 14.16a), the time and

1155 length scales relevant for each lithology individually dictate compaction phenom-

1156 ena. The alternative is that the heterogeneities are small, relative to the compaction

1157 length, in any of the individual lithologies. To illustrate this case (Fig. 14.16b),

1158 suppose a vertical sequence of two alternating lithologies in which the layering is

1159 thin compared to the compaction length in either layer and that the compaction

1160 length in one layer is so much larger than in the other layer that is effectively infinite

1161 (i.e., the lithology is rigid). If a porosity wave impinges on such a sequence, the

1162 fluid pressure gradient within the rigid layer must rise to supra-lithostatic values to

1163 conduct the excess flux carried by the wave, but within the soft layers dilation will

1164 cause the fluid pressure gradient to relax to near hydrostatic values. The result is to

1165 create a stepped fluid pressure profile that maintains a balance between compaction

1166 and dilation on the compaction time and length scales of the soft lithology. An

1167 implication of this logic is that the effective rheology for compaction processes in

1168 the lower crust is dictated by the rheology of the weakest lithology. In contrast,

1169 crustal strength in response to tectonically imposed deformation may be controlled

1170 by the strongest lithology, i.e., in the case of homogeneous thickening or thinning.

1 d

y f

1

<
high (or low )

length scale for lateral flow =
σ p

d 1

y f

0

<
low (or high )

length scale for lateral flow =
σ p

Drained Devolatilization

high porosity reaction zone

fracture zone (drain)

Fig. 14.15 Schematic of the influence of a drain (e.g., a permeable fracture zone) on fluid flow

within a high porosity horizon generated by a devolatilization reaction. If the compaction time and

length scales in the unperturbed matrix are t0 and d0, and the porosity in the horizon is f1, then the

corresponding scales within the horizon are, for ns ¼ nf ¼ 3, d1 ¼ (f1/f0)
1/2d0 > d0 and

t1 ¼ (f0/f1)
3/2t0 < t0. Thus, in the absence of decompaction weakening, the drain will draw

fluid from the layer on the length scale d1 (as depicted to the left of the drain) because the time

scale (t1) for within layer flow is shorter than the time scale (t0) for the development of dynamic

drainage within the unreacted matrix in response to high fluid pressure. If tensile yield strength

is < d0Drg, then decompaction weakening reduces the time scale for the development of dynamic

drainage to td ¼ sy/(d0Drg)t0. Thus, decompaction weakening may lead to circumstances (i.e.,

td < t1) in which dynamic drainage dominates and the length scale for lateral fluid within the

layer is limited by the compaction length (d0) in the unreacted rocks

634 J.A.D. Connolly and Y.Y. Podladchokov

jamie
Cross-Out

jamie
Replacement Text

jamie
Cross-Out

jamie
Replacement Text
 length scales that are 

jamie
Cross-Out

jamie
Inserted Text
 in regions of elevated porosity

jamie
Cross-Out

jamie
Replacement Text
behavior

jamie
Highlight



117114.6.3 Non-Lithostatic Stress

1172Compaction-driven flow responds to tectonic stress through its dependence on the

1173mean stress gradient (Eq. 14.5), but local deformation and/or lithological hetero-

1174geneity may give rise to strong variations in the far-field stress (Schmalholz and

1175Podladchikov 1999; Mancktelow 2008). As in the case of lithological heterogeneity

1176in a lithostatic crust, the influence of these variations depends upon whether they

1177occur on a spatial scale that is large or small compared to the compaction length

1178scale. Small scale variations will affect local flow patterns, but will not influence the

1179overall tendency of compaction to drive fluid toward low mean stress (strictly in the

1180direction of rfguz �r�s, which is vertical in the lithostatic limit). These variations

1181may distort the geometry of the porosity waves that develop in the non-lithostatic

1182case. But because the effective pressure necessary for compaction can only be

a heterogeneity >> >

lithology

st
ro

ng
er

w
ea

ke
r

z

porosity

b >> > heterogeneity

lithology

z z

p pf porosity

Fig. 14.16 Schematic of the influence of lithological layering on the propogation of a solitary

porosity wave through a viscous matrix. If the layers are thick, compared to the compaction length,

within each layer (a), the wave adopts its shape and speed according to the local compaction time

and length scales. If the layers are thin compared to the compaction length in either lithology, but

the compaction length is much greater in one lithology than it is in the other (b), then the properties

of the wave are limited by the compaction scales in the weaker lithology. The effective pressure

profile is drawn so that the fluid pressure gradient in the large porosity weak layers is near

hydrostatic, and that fluid pressure gradient necessary to conduct the excess flux within the

intervening rigid layers is supralithostatic and constant. In reality, because the excess flux varies

locally within a solitary wave, the supralithostatic gradients in the rigid layer would decrease

toward the tails of the wave
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1183 achieved by having hydraulic connectivity on the compaction length scale, the

1184 distortions are likely to be primarily kinematic.

1185 Large scale tectonic perturbations to the lithostatic mean stress gradient can, in

1186 general, be expected to have relatively minor influence on the rate and direction of

1187 compaction-driven fluid flow. The greatest influence on rate is realized during

1188 extension. In such a setting, the relaxation of differential stress in the brittle crust,

1189 which may be comparable to half the vertical load (Ranalli 1995), will relax over an

1190 O(lA) vertical interval (Connolly and Podladchikov 2004), potentially increasing

1191 the mean stress gradient responsible for, and accelerating, compaction-driven fluid

1192 flow. Perhaps more importantly, this effect will be amplified within, and favor the

1193 formation of, vertically elongated hydraulic domains such as the porosity waves

1194 predicted for the decompaction-weakening rheology (Sect. 14.5.6). The greatest

1195 influence on direction is realized in compression. During tectonic compression, the

1196 brittle crust supports differential stresses that are approximately twice the lithostatic

1197 load (Petrini and Podladchikov 2000; Mancktelow 2008). The relaxation of this

1198 stress gives rise to a negative mean stress gradient that may cause downward

1199 directed compaction-driven fluid flow on an O(lA) scale (Connolly and

1200 Podladchikov 2004). The inversion also creates a barrier to upward directed

1201 compaction driven flow. This barrier is most effective within vertically elongated

1202 hydraulic domains; thus, in contrast to the extensional case, compression may favor

1203 the formation of slow moving, horizontal, hydraulic domains such as the porosity

1204 waves predicted for compaction-driven flow in upward strengthening viscous rocks

1205 (Sect. 14.5.5).

1206 In the lithostatic limit, rocks can sustain fluid overpressures comparable to their

1207 tensile strength. Thus, decompaction can occur by viscous mechanisms as assumed

1208 in the porosity wave models presented here. However, in the presence of large

1209 differential stresses, rocks will fail by plastic mechanisms before the fluid over-

1210 pressure necessary for viscous dilational mechanisms can develop (Sibson 2000;

1211 Rozhko et al. 2007). As differential stresses are expected to grow towards the

1212 brittle-ductile transition, plastic failure will limit the viscous porosity wave mecha-

1213 nism to greater depths in non-lithostatic settings. Whether truly brittle deformation

1214 can be propagated upward by viscous compaction at depth, as implied by the

1215 viscous decompaction-weakening model advocated here, remains to be

1216 demonstrated.

1217 14.7 Concluding Remarks

1218 At near surface conditions, tectonic deformation maintains permeable fracture

1219 systems that, under most circumstances, permit drainage of crustal fluids with

1220 negligible fluid overpressure (Zoback and Townend 2001). In this regime, fluid

1221 flow is largely independent of the stress state of the rock matrix and weak

1222 perturbations induced by topography or fluid density variations may give rise to

1223 complex flow patterns (Ingebritsen et al. 2006). The base of the seismogenic zone,
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1224at temperatures of ~ 623 K, defines the brittle-ductile transition (Sibson 1986;

1225Scholz 1988), but evidence for the involvement of high pressure fluids in faulting

1226(e.g., Sibson 2009; Cox and Ruming 2004; Miller et al. 2004) indicates that fluid

1227overpressures develop above the brittle-ductile transition on the inter-seismic time

1228scale. This short-term cyclicity reflects the role of localized compaction in sealing

1229faults and fractures (Gratier et al. 2003; Tenthorey and Cox 2006). But at the brittle-

1230ductile transition the time scale for fluid expulsion (>2.3 cs _etectonic= ~O(108) y) is
1231slow with respect to metamorphic fluid production. Thus, the brittle-ductile transi-

1232tion lies within a transitional hydrological regime in which compaction-driven fluid

1233flow is gradually superimposed on the upper crustal regime. Within this transitional

1234regime, the efficiency of compaction increases exponentially with depth on the

1235O(1) km scale of the viscous e-fold length (Fig. 14.1). But because the efficiency of

1236compaction must be measured relative to rates of fluid production or drainage, it is

1237not possible to make a general statement about the depth or temperature at which

1238metamorphic fluid flow will become dominated by compaction.

1239Even if recent challenges (e.g., Oliver et al. 2000; Dewey 2005; Ague and Baxter

12402007) to the paradigm of heat-conduction limited metamorphism (England and

1241Thompson 1984) are acknowledged, the development of high fluid pressures

1242indicates that metamorphic environments must be characterized by extraordinarily

1243low permeability. Metamorphic fluid expulsion is not necessarily efficient (Warren

1244et al. 2011), but efficient fluid expulsion from poorly drained rocks requires a

1245dynamic mechanism in which the dilational deformation responsible for increasing

1246permeability is balanced by a compaction mechanism at depth responsible for

1247maintaining high fluid pressure. An essential feature of such a mechanism is that,

1248irrespective of the mean-stress gradient, hydraulic connectivity must be maintained

1249over a vertical interval that is large enough to generate the effective pressures

1250necessary to drive the deformation. Both self-propagating domains of fluid-filled

1251fractures (Gold and Soter 1985) and individual hydrofractures (Rubin 1995;

1252Nakashima 1995; Okamoto and Tsuchiya 2009) have been proposed as the mecha-

1253nism for such flow. These models suppose that the fractures are closed at depth, i.e.,

1254compacted, by the elastic response of the matrix. As a consequence, the fractures

1255propagate at high speeds, O(1) m/s, and have km-scale vertical dimensions. The

1256porosity wave mechanism, reviewed here, may also be manifest as interconnected

1257fractures, provided the individual fractures are small in comparison to the viscous

1258compaction length, but differs from elastic fracture models in that compaction is

1259viscous. A satisfying feature of the viscous mechanism is that it can operate on the

1260grain-scale, thereby explaining the pervasive compaction evident in metamorphic

1261rocks. If viewed as competing mechanisms, the mechanism that requires the

1262smallest vertical extent necessary to accommodate fluid production will dominate.

1263The albeit highly uncertain O(100) m estimate for the viscous compaction length,

1264obtained here for amphibolite-facies conditions, indicates that porosity waves can

1265meet this criterion for dominance.

1266The relatively minor role of compaction in many near surface environments

1267makes large scale hydrological modeling of the upper crust possible (Ingebritsen

1268et al. 2006). Possible in this context means that a stable initial condition can be
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1269 envisioned in which fluid and rock coexist. In contrast, the lower crust is an

1270 environment in which fluids are mechanically and, potentially, thermodynamically

1271 unstable (Connolly and Thompson 1989). Thus there is no time-invariant initial

1272 condition from which it is possible to assess the impact of the metamorphic process,

1273 which is itself the most likely source of lower crustal fluids. The assertion that the

1274 lower crust has an intrinsic background permeability towards which transient

1275 permeability decays is logically specious, because it is based on time-averaged

1276 metamorphic fluxes. However, permeabilities inferred from time-averaged fluid

1277 fluxes do provide an upper limit on the background permeability that characterizes

1278 the local environment of a metamorphic process in time and space (Ingebritsen and

1279 Manning 2010). The time and length scales for viscous compaction have been

1280 formulated to emphasize this limitation by separating material properties of the

1281 solid and fluid, from two transient properties of the initial state, namely porosity and

1282 the hypothetical background flux necessary to maintain lithostatic fluid pressure. If

1283 the time-averaged flux is used in place of the background flux, then the result

1284 provides only upper and lower limits on the compaction length and time scales.

1285 Consequently, forward models are unlikely to reveal the scales of fluid flow in

1286 lower crustal systems, but observations of natural patterns may ultimately provide a

1287 useful parameterization of these scales. These scales are fundamental limits for flow

1288 phenomena that are independent of stress state within the solid matrix. Thus, the

1289 scales are constrained by the duration and extent of lateral (e.g., Ferry and Gerdes

1290 1998; Wing and Ferry 2007; Staude et al. 2009) or downward (e.g., Austrheim

1291 1987; McCaig et al. 1990; Wickham et al. 1993; Upton et al. 1995; Cartwright and

1292 Buick 1999; Read and Cartwright 2000; Gleeson et al. 2000; Yardley et al. 2000;

1293 Munz et al. 2002; Gleeson et al. 2003) fluid flow.

1294 The role of compaction in metamorphic fluid flow is extraordinarily uncertain,

1295 but ignoring this uncertainty in models of metamorphic fluid flow does not make the

1296 models any more certain. Compaction is a good news, bad news story. The bad news

1297 is that the details of lower crustal flow may be influenced by unknowable details.

1298 The good news is that compaction driven fluid flow has a tendency to self-organize.

1299 Self-organization eliminates the dependence on details that are present on spatial or

1300 temporal scales that are smaller than the compaction length and time scales. Porosity

1301 waves are the mechanism for this self-organization, through which dilational defor-

1302 mation is localized in either time and/or space to create pathways for fluid expulsion.

1303 Although, this dilational deformation may be manifest by plastic failure, it is limited

1304 by the rate of the compaction process necessary to maintain elevated fluid pressures.

1305 At metamorphic conditions, the compaction process is unequivocally viscous.

1306 The porosity waves that form in a matrix that compacts by viscous mechanisms

1307 are generally solitary waves that, once formed, are independent of their source.

1308 This paper has outlined a simple method of predicting the geometry, size, and speed

1309 of such waves under the assumption that fluid drainage keeps pace with fluid

1310 production. If this assumption were true throughout the metamorphic column then

1311 the time-averaged permeability would be identical to that obtained by assuming

1312 uniform fluid flow. In fact, the assumption is demonstrably untrue on a crustal scale

1313 for the viscous case, because the waves slow towards the brittle-ductile transition,
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1314an effect that leads to fluid accumulation. Of course, the activation of other drainage

1315mechanisms may maintain the assumed steady state, but the inconsistency serves to

1316demonstrate that characterizing a dynamic system by a time-averaged dependent

1317property, such as permeability, has no predictive value.

1318In the viscous limit, the models summarized here predict that lower crustal

1319porosity waves will create fluid-rich horizons, with thickness comparable to lA,
1320beneath the brittle-ductile transition (Sect. 14.5.5). Geophysical evidence for such

1321horizons is common (Suetnova et al. 1994; Hammer and Clowes 1996; Ozel et al.

13221999; Liotta and Ranalli 1999; Makovsky and Klemperer 1999; Vanyan and Gliko

13231999; Stern et al. 2001; Jiracek et al. 2007). Coupled with external forcing, the

1324horizons may function as conduits for the large-scale lateral fluid flow responsible

1325for some types of hydrothermal mineralization and as reservoirs for fluid-driven

1326seismicity (e.g., Cox 2005). Paradoxically, although these horizons reflect upward

1327strengthening of the ductile crust with respect to dilational processes, theymay reduce

1328the shear strength of the crust precisely at depths where the crust is presumed to be

1329strong. Fluid flowwithin this interval of the crust is likely to be further complicated by

1330the influence of tectonic stress developed in the brittle crust (Sect. 14.6.3 AU2). To make

1331matters still worse, elastic compaction mechanisms become competitive at this depth

1332(e.g., Fig. 14.15 of Connolly and Podladchikov 1998). Elastic compaction rheology

1333also has wave solutions that form in response to high fluid pressures (Rice 1992), but

1334unlike viscous waves, elastic waves cannot detach from their source and propagate as

1335transient shocks accompanied by fluid pressure surges. Thus, the stagnation of mid-

1336crustal viscous porosity waves may be accompanied by high velocity, low amplitude

1337surges of fluid into the upper crust (Connolly and Podladchikov 1998). This type of

1338flowpattern is consistent with the timing of aftershocks during crustal faulting (Miller

1339et al. 2004). Because elastic waves can propagate through a matrix with no prior

1340hydraulic connectivity, elastic compaction may also be an important mechanism at

1341the onset of metamorphism. Viscoelastic porosity wave solutions exist in the zero-

1342porosity limit (Connolly and Podladchikov 1998), but their relevance tometamorphic

1343fluid expulsion has yet to be explored.

1344Porosity waves are a mechanism capable of bridging the extremes between

1345pervasive and fully segregated fluid flow. The metasomatic effect of fluid infiltra-

1346tion is maximized between these extremes when the flow is strongly focused into

1347channels, but not fully segregated. A decompaction-weakening matrix rheology, in

1348which the matrix yields more readily under negative effective pressure, than it does

1349under positive pressures, can explain channeling (Sect. 14.5.6). The origin of this

1350rheology is attributed to the asymmetric role of cohesion during dilation (Connolly

1351and Podladchikov 2007). The expression of plastic yielding is temperature-

1352dependent, tending toward the ductile and brittle limits at, respectively, high and

1353low temperatures (Hill 1950). Thus at high temperatures decompaction-weakening

1354is capable of inducing channelized fluid flow in completely ductile rocks (Bouilhol

1355et al. 2011). Reactive transport instability (Daines and Kohlstedt 1994; Aharonov

1356et al. 1997) and shear-enhanced segregation (Holtzman and Kohlstedt 2007) are

1357alternative mechanisms for inducing channelization in ductile rocks. In nature any
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1358 mechanism of channelization may be associated with metasomatism, but the

1359 reactive transport instability is implicitly metasomatic. A limitation to the reactive

1360 transport instability is that the net solubility of the matrix in the fluid must increase

1361 in the direction of fluid flow. The key distinction between the flow patterns

1362 generated by decompaction-weakening and other focusing mechanisms, is that in

1363 the case of decompaction-weakening fluid is circulated into and out of the matrix,

1364 whereas reactive transport and shear-enhanced segregation are associated

1365 with unidirectional flow. When considered in tandem, mechanical and reactive

1366 transport instabilities are mutually reinforcing (Spiegelman et al. 2001; Liang

1367 et al. 2010).
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1373 Appendix: Steady-State Porosity Waves in a Viscous Matrix

1374 This appendix presents a steady-state wave solution for flow of an incompressible

1375 fluid through a viscous matrix composed of incompressible solid grains. Geological

1376 compaction literature invariably assumes Newtonian behavior for the viscous

1377 mechanism; however, lower crustal environments may well be characterized by

1378 power-law viscous rheology (e.g., Kohlstedt et al. 1995). Accordingly, the solution

1379 derived here is general with respect to the dependence of the viscous rheology on

1380 effective pressure. Aside from this modification, the mathematical formulation of

1381 the governing compaction equations is identical to that of Connolly and

1382 Podladchikov (2000, 2007).

1383 Conservation of solid and fluid mass requires

@ð1� fÞ
@t

þr � 1� fð Þvsð Þ ¼ 0 (14.35)

1384 and

@f
@t

þr � fvfð Þ ¼ 0; (14.36)

1385 where subscripts f and s distinguish the velocities, v, of the fluid and matrix. From

1386 Darcy’s law, force balance between the matrix and fluid requires

q ¼ f vf � vsð Þ ¼ � k

m
rpf � rfguzð Þ: (14.37)
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1387In one-dimensional compaction of a vertical column, mean stress is identical to

1388the load

�s ¼
ðz

0

1� fð Þrs þ frfð Þguzdz: (14.38)

1389Thus, in terms of effective pressure, pe ¼ �s� pf ; Eq. 14.37 is

f vf � vsð Þ ¼ k

m
rpe � 1� fð ÞDrguzð Þ: (14.39)

1390The divergence of the total volumetric flux of matter is the sum of Eqs. 14.35 and

139114.36

r � vs þ f vf � vsð Þð Þ ¼ 0; (14.40)

1392and substituting Eq. 14.39 into Eq. 14.40

r � vs þ k

m
rpe � 1� fð ÞDrguzð Þ

� �
¼ 0: (14.41)

1393Matrix rheology is introduced with Eq. 14.16 by observing that the divergence of

1394the solid velocity is the dilational strain rate of the matrix

r � vs ¼ f
1� f

_ef ¼ �csf fA pej jns�1pe (14.42)

1395where f f ¼ f 1� fð Þ= 1� f1=ns
� �ns

(Wilkinson and Ashby 1975). As the func-

1396tional form of Eq. 14.42 may vary depending on the magnitude of the porosity and

1397the viscous mechanism (Ashby 1988), the subsequent analysis assumes ff is an

1398unspecified function of porosity.

1399To avoid the unnecessary complication associated with the use of vector notation

1400for a one-dimensional problem, in the remainder of this analysis vector quantities

1401are represented by signed scalars and the gradient and divergence operators are

1402replaced by ∂/∂z. Supposing the existence of a steady state solution in which fluid

1403explusion is accomplished by waves that propagate with unchanging form through a

1404matrix with background porosity f0 filled by fluid at zero effective pressure, then,

1405in a reference frame that travels with the wave, integration of Eq. 14.35 gives the

1406matrix velocity as

vs ¼ v1
1� f0

1� f
(14.43)
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1407 where v1 is the solid velocity in the limits f ! f0 and pe ! 0, i.e., at infinite

1408 distance from the wave. After substitution of Eq. 14.43, the integrated form of

1409 Eq. 14.41 can be rearranged to

@pe
@z

¼ qt � v1
1� f0

1� f

� �
m
k
þ 1� fð ÞDrg (14.44)

1410 where qt ¼ fvf + (1 � f)vs is the constant, total, volumetric flux of matter through

1411 the column, which evaluates in the limit f ! f0 and pe ! 0 as

qt ¼ v1 � 1� f0ð Þ k0
m
Drg (14.45)

1412 where k0 is the permeability at f0. Thus, Eq. 14.44 can be rewritten

@pe
@z

¼ Drg 1� f� 1� f0ð Þ k0
k

� �
� v1

m
k

f� f0

1� f
: (14.46)

1413 Likewise, substitution of Eq. 14.43 into Eq. 14.42 yields

@f
@z

¼ � 1� fð Þ2
1� f0

f f
csA pej jns�1pe

v1
(14.47)

1414 If permeability is an, as yet unspecified, function of porosity, then Eqs. 14.46 and

1415 14.47 form a closed system of two ordinary differential equations in two unknown

1416 functions, f and pe. As v1 is the solid velocity at infinite distance from a steady-

1417 state wave, if the reference frame is changed to that of the unperturbed matrix, the

1418 phase velocity of the wave is vf ¼ �v1.

1419 For notational simplicity Eqs. 14.46 and 14.47 are rewritten

@pe
@z

¼ f 1 (14.48)

@f
@z

¼ f 2
csA

vf
pej jns�1pe (14.49)

1420 where f1 is the dependence of Eq. 14.46 on f and vf, and f2 isolates the dependence
1421 of Eq. 14.47 on f. Combining Eqs. 14.48 and 14.49 to eliminate z, and rearranging,
1422 yields

0 ¼ csA

vf
pej jns�1pedpe �

f 1
f 2
df; (14.50)
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1423which must be satisfied by the f-pe trajectory of any steady-state solution. Defining
1424a function H such that

H � �
ð
f 1
f 2
df; (14.51)

1425the integral of Eq. 14.50 yields a function

U � csA

vf

pej jns�1p
2

e

ns þ 1
þ H (14.52)

1426whose f-pe contours explicitly define the f-pe trajectory for all steady-state

1427solutions as a function vf. Because U increases monotonically, and symmetrically,

1428with positive or negative pe at constant f, and H is independent of pe, the stationary
1429points of Umust occur at pe ¼ 0 and correspond to extrema in H, i.e., the real roots
1430of @H @f ¼ �f 1 f 2= ¼ 0= : Moreover, as f2 must be finite if the matrix is coherent,

1431the roots of @H @f ¼ 0= are identical to the roots of f1 ¼ 0. Therefore f0 is always a

1432stationary point, with the character of a focal point if @f 1 @f< 0= and that of a

1433saddle point if @f 1 @f>0= . When f0 is a focal point, the steady-state wave solutions

1434correspond to periodic waves that oscillate between two values of porosity on either

1435side of f0, characterized by equal H, at which pe vanishes (Fig. 14.6b). The case of
1436greater interest is a solitary wave (Fig. 14.6a), in which the porosity rises from f0 to

1437a maximum, at which H(fmax) ¼ H(f0), and then returns to f0. This solution

1438requires both the existence of a focal point at f > f0 and that f0 is a saddle

1439point. For the rheological constitutive relation employed here (Eq. 14.42), the first

1440condition is always met when f0 is a saddle point. Thus, the critical velocity for the

1441existence of the solitary wave solution, i.e., the bifurcation at which f0 switches

1442from focal to saddle point, is

vcritf ¼ � k0
m

1� f0ð ÞDrg 1� f0ð Þ
k0

@k

@f






f¼f0

� 1

 !
; (14.53)

1443which is obtained by solving @f 1 @f ¼ 0= for vf. Substituting the explicit function

1444for permeability given by Eq. 14.17 into Eq. 14.53 yields

vcritf ¼ � k0
f0m

1� f0ð ÞDrg 1� f0ð Þnf � f0

� � ¼ v0 1� f0ð Þnf � f0

� �
: (14.54)

1445Equation 14.54 implies that, in the small-porosity limit, the minimum speed at

1446which steady solitary waves exist is nf times the speed of the fluid through the

1447unperturbed matrix.

1448The relation between amplitude (maximum porosity) and vf is obtained by

1449solving
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H fmaxð Þ � H f0ð Þ ¼ �
ðfmax

f0

f 1
f 2
df ¼ 0: (14.55)

1450 The resulting expressions are cumbersome, but, in the small-porosity limit of

1451 Eqs. 14.17 and 14.42, the solution of Eq. 14.55 is

vf ¼ � cff
nf�1

0 Drg
m

nf � 1
� � fnf

0 þ fnf
max nf ln

fmax

f0

� �
� 1

h i

fnf�1

0 nffmax � f0 nf � 1
� �� �� fnf

max

: (14.56)

1452 From Eq. 14.56 it follows that nf > 1 is a necessary condition for the existence

1453 of solitary waves. Equation 14.56 also has the surprising implication that amplitude

1454 is not a function of ns, for large porosity the function ff, in the exact form of

1455 Eq. 14.42, gives rise to a weak dependence of amplitude on ns. For a solitary wave

1456 with specified phase velocity, the effective pressure is obtained as an explicit

1457 function of f from the definite integral of Eq. 14.50, which can be rearranged to

pe ¼ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ns þ 1ð Þ vf

csA

ðf

f0

f 1
f 2
df

nsþ1

vuuuut ; (14.57)

1458 where the signs have been dropped in view of the symmetry of the solution. And

1459 finally, substituting Eq. 14.57 into Eq. 14.47, inverting the result, and integrating

1460 yields the depth coordinate relative to the center of a wave as a function of f

z ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vf
csA ns þ 1ð Þns

nsþ1

r ðf

fmax

1

f 2

ðf

f0

f 1
f 2
df

0
B@

1
CA

� ns
nsþ1

df: (14.58)

1461 To demonstrate that z ! 	1 as f ! f0, the inner integral and its factor in

1462 Eq. 14.58 are approximated by the first non-zero terms of Taylor series expansions

1463 about f ¼ f0 to obtain

z � 	 vf
csAf 2jf¼f0

ns þ 1

2

@f 1
@f






f¼f0

 !�ns ! 1
nsþ1 ð0

F

F� 2ns
nsþ1dF (14.59)

1464 where F ¼ f � f0. In the limit F ! 0, the integral in Eq. 14.59 is finite only if

1465 ns < 1, from which it is concluded that solitary waves have infinite wavelength in a

1466 linear or shear thinning viscous matrix, but may have finite wavelength in the

1467 peculiar case of a shear thickening viscous matrix. Rewriting the integral in

1468 Eq. 14.59 in terms of dlnf, and differentiating yields
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@z

@ lnF
� F1�ns

vf
csAf 2jf¼f0

ns þ 1

2

@f 1
@f






f¼f0

 !�ns ! 1
nsþ1

(14.60)

1469the depth interval over which porosity decays from ef0 to f0 within a porosity

1470wave. This interval is taken here as the characteristic length scale for variations in

1471porosity, i.e., the viscous compaction length. The derivative on the left-hand side of

1472Eq. 14.60,

@f 1
@f






f¼f0

¼ Drg
1� f0ð Þ
k0

@k

@f






f¼f0

� 1

 !
þ vfm
k0 1� f0ð Þ ; (14.61)

1473is zero at vf ¼ vcritf , but decreases monotonically with vf; thus dropping the first

1474term in Eq. 14.61, and substituting vf ¼ vcritf and F ¼ (e � 1) f0 in Eq. 14.60, and

1475expanding f2 at f0 as 1� f0ð Þf f



f¼f0

yields

d ¼ e� 1ð Þf0Drg 1� f0½ 
@k
@f






f¼f0

� k0

 ! !1�ns
2k0

ns þ 1

� �ns 1

csAmf f



f¼f0

2
4

3
5

1
nsþ1

;

(14.62)

1476a length scale that provides a lower bound on wavelength. For a linear-viscous

1477matrix with shear viscosity Z ¼ 1/(3A), the constitutive relation given by

1478Eq. 14.42, and the small-porosity limit, Eq. 14.62 simplifies to

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3

Z
f0

k0
m

s

1479which, accounting for differences in the formulation of the bulk viscosity of the

1480matrix, is identical to the viscous compaction length of McKenzie (1984). For a

1481non-linear viscous matrix, making use of constitutive relations given by Eqs. 14.17

1482and 14.42, in the small-porosity limit the compaction length is

d ¼ Cf
nf�1

nsþ1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ns þ 1

� �ns cf

csAm Drgð Þns�1

nsþ1

s
; (14.63)

1483where

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nf e� 1ð Þ� �1�nsnsþ1

q
: (14.64)
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1484 The factor C represents two non-general assumptions of the analysis: that the

1485 phase velocity is nfv0; and that the porosity decay is from ef0 to f0. In the spirit of

1486 dimensional analysis, this factor (~2.27 for ns ¼ nf ¼ 3) is neglected in the text.
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