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Abstract⎯Gibbs energy minimization is the means by which the stable state of a system can be computed as
a function of pressure, temperature and chemical composition from thermodynamic data. In this context,
state implies knowledge of the identity, amount, and composition of the various phases of matter in hetero-
geneous systems. For seismic phenomena, which occur on time-scales that are short compared to the time-
scales of intra-phase equilibration, the Gibbs energy functions of the individual phases are equations of state
that can be used to recover seismic wave speeds. Thermodynamic properties relevant to modelling of slower
geodynamic processes are recovered by numeric differentiation of the Gibbs energy function of the system
obtained by minimization. Gibbs energy minimization algorithms are categorized by whether they solve the
non-linear optimization problem directly or solve a linearized formulation. The former express the objective
function, the total Gibbs energy of the system, indirectly in terms of the partial molar Gibbs energies of phase
species rather than directly in terms of the Gibbs energies of the possible phases. The indirect formulation of
the objective function has the consequence that although these algorithms are capable of attaining high pre-
cision they have no generic means of treating phase separation and expertise is required to avoid local minima.
In contrast, the solution of the fully linearized problem is completely robust, but offers limited resolution.
Algorithms that iteratively refine linearized solutions offer a compromise between robustness and precision
that is well suited to the demands of geophysical modeling.
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INTRODUCTION
Gibbs energy minimization is a technique by which

rock mineralogy, and ultimately its elastic and caloric
properties, can be predicted as a function of pressure,
temperature and bulk composition from thermody-
namic data (Fig. 1). Although Gibbs energy minimi-
zation has long been advocated for geophysical prob-
lems (e.g., Saxena and Eriksson, 1983; Wood and
Holloway 1984; Sobolev and Babeyko, 1994; Bina,
1998), it is only in the last decade that the availability
of comprehensive thermodynamic data bases (e.g.,
Ricard et al., 2005; Khan et al., 2006; Stixrude and
Lithgow-Bertelloni, 2007; Stixrude and Lithgow-Ber-
telloni, 2011) has made the application of such calcu-
lations feasible for geophysical models of the entire
Earth’s mantle. This paper outlines the Gibbs energy
minimization problem, the classes of algorithms used
to solve it, and the thermodynamic relations necessary
to extract elastic and caloric properties.

Although Gibbs energy minimization computer
programs are often applied in the modelling of petro-
logical phase equilibria, the most popular program
developed for this purpose (THERMOCALC, Powell
1978) is a phase equilibrium calculator. The distinction
between calculators and minimization programs is that
the former invokes assumptions about the stability of

one or more phases. Thus, in the THERMOCALC
algorithm the phase assemblage is specified and the
compositions of the phases are computed. The popular-
ity of calculators, which are not considered further here,
reflects both that the requisite assumptions can often be
justified by petrological expertise and that calculators
can be used to treat chemically complex systems. How-
ever reliance on expertise is generally impractical in
large-scale geophysical applications.

THERMODYNAMIC PRELIMINARIES
In the presence of aqueous f luids rocks attain

thermodynamic equilibrium at temperatures as low
as ~600 K (Bucher and Frey, 1994) and even anhy-
drous silicate systems are reasonably well equili-
brated at temperatures in excess of ~1100 K (Wood
and Holloway, 1984). Thus, it is reasonable to
assume that the mineralogy of the bulk of the interior
of the earth can be predicted by thermodynamic
methods. A combined statement of the first and sec-
ond laws of thermodynamics expresses the variation
in the internal energy (U) of a system

(1)

as a first order homogeneous differential in entropy (S),
volume (V) and the molar amounts (Nk) of the c inde-1 The article is published in the original.
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pendently variable kinds of mass, i.e., the chemical
components, and the differential coefficients are tem-
perature (T), pressure (P) and chemical potentials (μk).
The equality in Eq. (1) applies in the limit of reversible
processes and the inequality accounts for entropy pro-
duction, i.e., dissipation, associated with real pro-
cesses. Equation (1) assumes, as is conventional in

chemical thermodynamics, and generally well justified
in earth science applications, isostatic stress and the
absence of strong electromagnetic and gravitational
fields. To illustrate the predictive capacity of the sec-
ond law, the entropy differential may be decomposed
into the component ( ) that arises through
interactions between a system and its environment and

externaldS

Fig. 1. Phase relations (a) and physical properties (b–d) for a Na2O–CaO–Al2O3–MgO–FeO–SiO2 pyrolite bulk composition
computed by Gibbs energy minimization. The isentropes (mantle adiabats) superimposed on the phase diagram section in (a) are
obtained from the Gibbs energy minimization. The bulk moduli used to compute p-wave speed are the Voigt-Reuss-Hill averages
of the corresponding moduli of the stable phases. Bulk composition and thermodynamic data, including solution models, are
from Stixrude and Lithgow-Berterlloni (2011), the calculations were done using the Perple_X program (Connolly, 2009). Phase
notation: Ak—akimotoite; cp—Ca-perovskite; CF—calcium ferrite structure Na-Mg-Fe silicate; Cpx—clinopyroxene; C2c—high
pressure pyroxene; Gt—garnet; O—olivine; Opx—orthropyroxene; Pl—plagioclase; Pv—bridgmanite; Rng—ringwoodite; Sp—
spinel; st—stishovite; Wad—Wadleysite; Wus—wuestite. Lower case notation indicates stoichiometric (pure) phases. 

Cpx
Gt
O

Opx

Cpx
Gt
O

Wu

Gt
Ri
st

Gt
Ri

Gt
Ri

Gt

Cpx
O

Gt
Gt

Cpx
Gt
O

Cpx
O

Opx

Cpx
O

Opx
Sp

Cpx
C2c
O
Gt

Cpx
C2c
Gt

cp
Gt
Ri
st

cp
CF
Gt
Pv
Ws

1500 1700 1900 2100 2300 2500

12
2
5

1
2

0
0

12
50

12
75

1250

1275

1300

10

20

30

1500 1700 1900 2100 2300 2500

11.5

10.5

9.5

8.5

7.5

10

20

30

1500 1700 1900 2100 2300 2500

P-wave speed, km/s

4500

4300

3900

3700

3500

3300

3100

10

20

30

10

20

30

1500 1700 1900 2100 2300 2500T, KT, K

T, KT, K

P
, 

G
P

a

P
, 

G
P

a
P

, 
G

P
a

P
, 

G
P

a
Isobaric heat capacity, J/kg/K

WuWu
Wa

Wa

Wa

Wu

Cpx
O

Opx
Pl

Density, kg/m3Isentropes, J/K/kg

2
5

0
0

2
7

0
0

2
9

0
0

2
3

0
0

Ak
cp

CF
Pv
Wu

cp
CF
Pv
Wu

cp
Gt
Pv
Wu

cp
Gt
Ri

Wucp
Gt
Ri

Ak
cp
Gt
Ri

Wa

Cpx
Gt



528

PETROLOGY  Vol. 25  No. 5  2017

CONNOLLY

the component due to spontaneous internal processes

( ). For an isobaric, isothermal, chemically

closed system (i.e., ), the only
possible interactions with its environment are

mechanical work ( ) and heat exchange

( ). As these interactions are isothermal and
isobaric, they must be reversible, therefore from Eq. (1)

(2)

Since the left-hand side of Eq. (2) is zero by definition
and the entropy production by any real internal pro-
cess must be positive, it follows that the differential

(3)

must be negative for any real process at constant tem-
perature, pressure and composition, and therefore
that the function G, known as the Gibbs energy, must
have its lowest possible value when the system is in a
state such that no spontaneous processes are possible,
i.e., a state of stable thermodynamic equilibrium. The
complete differential of G in the reversible limit is
obtained by substituting the integral of Eq. (1) for an
equilibrium system

(4)

in Eq. (3) to obtain

(5)

Equation (5) expresses G as a function of both state
and size; in practice, the size dependence is eliminated
by normalizing extensive properties relative to a fixed
amount of matter. The only rational normalization is
to identify amount with one of the extensive variables
of Eq. (1), unfortunately in chemical thermodynamics
amount is almost invariably defined as

(6)

a definition adopted here in view of its broad use. The
specific molar amounts of the different kinds of mass,

i.e., the molar chemical compositions, ,

are then subject to the constraint

(7)

Eliminating xc through Eq. (7), the differential of the

specific Gibbs energy is

(8)
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Compilations of thermodynamic data and solution
models (e.g., Stixrude and Lithgow-Bertelloni, 2011)
provide the information necessary to construct con-

tinuous functions gi(P, T, xk) that describe the various

equilibrium states of matter possible in a given system.
While the structure of such a function is important in
that it determines the reliability of its interpolation
and extrapolation, such details are of no relevance to
the phase equilibrium problem and are therefore not

considered here. The function gi(P, T, xk) is a com-

plete equation of state in that it combines the infor-
mation contained separately in what are often
referred to as mechanical and caloric equations of
state and solution models (i.e., chemical equations of
state), e.g., from Eq. (8)

(9)

(10)

While it is common to identify gi with a particular
phase, this usage is formally incorrect because every
state represented by such a function is a possible phase
of matter. Even if equilibrium is prescribed, the num-
ber of states of matter represented by a particular func-

tion gi is not known a priori. For example, K-Na-Ca

feldspar is described by a single function gi, yet it is well
known that under certain conditions three distinct
phases of feldspar stably coexist (e.g., Fuhrman and
Lindsley, 1988). Similarly, the description of critical
phenomena in f luids requires that the subcritical liq-
uid and gas states are defined by a single continuous
equation of state (e.g., Prausnitz, 1969).

In the present context, the phase equilibrium prob-
lem is, given a collection of one or more equations of

state , to identify the p phases of matter that
minimize the Gibbs energy of the system subject to the
constraints of mass balance and that the amount of a
phase cannot be less than zero. Assuming that any
energetic effects arising from interactions (e.g., surface
tension) between phases are negligible, the Gibbs
energy of the system is

(11)

where the subscript j identifies a phase represented by

one of the  equations of state under consider-
ation. Mass balance requires that the compositions of
these phases satisfy

(12)

and that the amounts of the phases satisfy

(13)

,
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The solution to Eqs. (11)–(13) corresponds to the
point on the convex hull in the c-dimensional g-x
space that bounds the various equations of state at the
specified composition of the system. Provided the
pressure and temperature of the system are arbitrarily
specified, then the maximum number of phases in this
solution is c. In this case, the convex hull must be lin-
ear at the composition of the system and the identities
and compositions of the phases are given by the c
points at which the hull is tangent to the equations of
state. The minimum number of phases (i.e., p = 1)
corresponds to the case that the hull is coincident with
one equation of state at the composition of the system.

To make the foregoing expression of the phase
equilibrium problem less abstract consider a two-
component system. If the minimum Gibbs energy
constraint is discounted, the system may be composed
of any positive linear combination of the phase states
defined by the equations of state that satisfy mass bal-
ance (Eq. (12)). In a system in which all states of mat-
ter are described by a single equation of state (Fig. 2),
if two such phases exist, then from Eq. (11) the Gibbs
energy of the system is given by the g-coordinate of the
chord connecting the g-x coordinates of the phases at
the x-coordinate of the system. Provided the equation
of state is convex with respect to the g-coordinate, the
Gibbs energy of the system is lowered as the composi-
tions of the phases are made to approach each other.
Thus, in this case, the stable state of the system will
always consist of a single phase. In contrast, if the
equation of state is concave over a compositional
interval (Fig. 3), then the convex hull of minimum
Gibbs energy states must be simultaneously tangent to
two compositions on either side of the concave inter-
val. The Gibbs energy of any homogeneous state
within this larger interval is greater than the Gibbs
energy of a mixture of the two states that bound the
interval. Since no state on a concave interval can be
stable, it is natural to ask whether concave functions
need be considered at all. The reason such functions
must, in general, be considered is that geometry of the
surface is a function of pressure and temperature
therefore not known a priori. For example, at high
temperatures plagioclase is a continuous stable solu-
tion between albite and anorthite, whereas at low tem-
perature intermediate plagioclase compositions are
unstable with respect to a mixture of albite- and anor-
thite-rich compositions.

NON-LINEAR GIBBS ENERGY 
MINIMIZATION STRATEGIES

Gibbs energy minimization strategies used for
earth science applications (e.g., Ghiorso et al., 1983;
Saxena and Eriksson, 1983; Wood and Holloway,
1984; Karpov et al. 1997; Bina, 1998; Asimow and
Ghiorso, 1998; Tirone et al., 2009; Stixrude and
Lithgow-Bertelloni, 2011) that solve the true non-
linear formulation of the phase equilibrium problem

do not express the Gibbs energy of a system as a
direct function of the energy of its phases, rather the
Gibbs energy function of any phase with variable
composition is expressed in terms of the properties of
an arbitrarily defined set of “endmembers” or “spe-
cies” of fixed composition. In this formulation, the
specific Gibbs energy of a phase is

(14)

where  is the molar fraction of species l in phase j and

(15)

is the partial molar Gibbs energy of the species. In this
paper the variables held constant during partial differ-
entiation of a function are not indicated if the variables
correspond to the natural variables of the function
(Callen, 1960); thus in Eq. (15), it is implicit that dif-

ferentiation is done at constant P, T, and . The
distinction between components and species may
merit clarification by example. Consider the H2O sys-

tem, all the phases (various ices, water, and steam)
that may form in this system are essentially stoichio-
metric H2O, thus the system has only one component.
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Fig. 2. Schematic g-x space of a binary (c=2), isobaric-iso-

thermal, system in which all possible states of matter are

described by a single convex equation of state . If the
equilibrium constraint is discounted, then the possible
states of the system are any positive linear combination of

states represented by  that spans xsystem. For exam-
ple, if the system is made up of matter in the states indi-

cated by points a and b, then gsystem is the g-coordinate of

the chord connecting these states at xsystem. From this con-

struction it is apparent that the gsystem is lowered as the

compositions of states a and b approach , and that

gsystem is minimized when all parts of the system are in the
same state. The construction also illustrates that no more

than one state of matter represented by a convex  func-

tion can be present in a stable system.

g1(x1)

x1

g
g'

gmin

g

0 1

a

a'

b

b'

x1 = N1/(N1 + N2)

1
1( )g x

1
1( )g x

system

1x

( )g x



530

PETROLOGY  Vol. 25  No. 5  2017

CONNOLLY

However, particularly at high temperature, it is known

that steam is a mixture of, at least, three molecular spe-

cies, H2O, H2, and O2. Likewise, the electrolytic prop-

erties of water cannot be explained without acknowl-

edging the existence of H+ and OH− ions. From a purely

thermodynamic perspective, the existence of micro-

scopic species is irrelevant, but acknowledging their

existence may facilitate construction of equations of

state. An equation of state in terms of s > c endmembers,

implies s – c auxiliary constraints (e.g., mass and

charge balance, closure, and internal equilibrium).

In simple equations of state the species may be

identified as chemically pure species, but more gener-

ally species may represent hypothetical states that are

chosen for convenience. The equations of state of

these species, , are compiled in thermody-
0
( , )lg P T

namic data bases, while the functions that describe
how these equations of state are to be combined to

define , the equation of state of an impure
phase, are referred to as solution models.

In terms of partial molar Gibbs energies, the Gibbs
energy of the system can be expressed

(16)

where zm is the molar amount of species m in the sys-
tem, present as a constituent of phase j(m), and t is the
total number of species needed to describe the possible
phases of the system. Eq. (16) is then minimized by
varying the amounts of the species subject to the linear
constraints

(17)

and

(18)

Although the mass of a phase cannot be negative, solu-
tion models may be formulated in such a way that the
relative amounts of all the species need not be positive.
Thus, the bounds on the optimization variables,
Eq. (18), cannot be specified without knowledge of
the specific formulations of the solution models under
consideration.

The use of Eq. (16) as an objective function poses
two major difficulties. The first is that unless all the

 functions of interest are convex, the same spe-
cies may occur more than once in the stable phases of
the system. In such circumstances, the partial molar
Gibbs energy of the species are identical in the coexist-
ing phases, but the concentration of the species differ
(Fig. 3). Treatment of this problem requires that the
species, as counted in Eqs. (16)–(18), must be distin-
guished on the basis of their concentrations as well as
their formal identity. However, knowledge of the con-
centrations of the species implies knowledge of the
stable phases, which are, of course, not known a pri-
ori. While strategies have been developed to resolve
this problem (e.g., Karpov et al., 1997), in general,
non-linear optimization strategies are unsuited or
poorly suited to applications where phase separation, a
common phenomenon in minerals, is possible.

Even when it can be assumed that all  func-
tions of interest are convex, a generic difficulty in min-

imizing Eq. (16) is that the  functions involve log-
arithmic terms that are undefined at the lower bound
on zm. Thus in practice a species must be eliminated

from the minimization procedure if its concentration
approaches this limit. Once the minimization con-
verges with a reduced set of the species, some criterion
must be applied to decide whether any endmembers
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Fig. 3. Schematic g-x space of a binary (c=2), isobaric-iso-

thermal, system in which all possible states of matter are

described by the equation of state , which has two

inflections. The convex hull bounding  defines the
stable states of the system as a function of its composition
and is linear between points a and b. For any composition
of the system in that interval, the homogeneous state of the

system represented by  is metastable with respected
to a mixture of the phases represented by points a and b.
This behavior is referred to as phase separation or immis-

cibility. Although schematic, the shape of  is charac-
teristic of condensed phase solution behavior and reflects
the relative contributions of the stabilizing configurational
and destabilizing strain energy terms (Hillert, 2008). In the

limit x → 0 at finite temperature,  is always convex
because the configurational term varies as ln x, whereas the
strain term typically varies as x. The destabilizing strain
term is weakly dependent on pressure and temperature,
whereas the stabilizing configurational term varies as T.

Consequently, in the limit T → 0,  is concave and
there is no stable chemical mixing, whereas in the limit

T → ∞,  must be convex. The transition from a uni-

formly to partly convex  function with falling tem-
perature is the origin of critical phenomena. The g-coordi-
nate of tangent to the minimum Gibbs energy surface of
the system extrapolated to the composition of either com-
ponent, i.e., N2 at x1 = 0 and N1 at x1 = 1, is identical to the

chemical potential of the component and the partial molar
free energies of the component in the stable phases of the

system. 
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eliminated in this way should be restored. The fallibil-
ity of such criteria complicates non-linear optimiza-
tion and increases the probability of convergence to a
local minimum; thus as a group these non-linear opti-
mization strategies require expertise.

The THERIAK algorithm (DeCapitani and
Brown, 1987), which has proven particularly effective
for solid-earth applications (Sobolev and Babeyko,
1994; Gerya et al., 2001), is unique among non-linear
minimization strategies in that the Gibbs energy of the
system is expressed as direct function of the Gibbs
energies of its constituent phases. In the initial step of
the THERIAK algorithm the Π possible pure phases
are considered. The c stable phases under this con-
straint are found by minimizing

(19)

subject to

(20)

and

(21)

by linear programming. This initial solution defines
the g-x plane (Fig. 4a)

(22)

The complete set of  functions of interest are
then transformed as

(23)

so that in the transformed g-x space the plane of the
initial solution is horizontal (Fig. 4b). Non-linear pro-
gramming is then used to locate the minima of the

individual  functions and the linear programming
step is repeated considering these minima and the
phases of the initial solution. These two steps are
repeated iteratively until the solution is judged to
have converged to the global minimum. The virtue of
THERIAK is it provides a general solution to the
immiscibility problem. However, this solution is sub-
ject to the caveat that the location of all local minima
during the non-linear programming step is essential to
assure convergence to the global minimum and is not
algorithmically certain.

LINEARIZED GIBBS ENERGY 
MINIMIZATION

The THERIAK algorithm is a partially linearized
solution to the phase equilibrium problem in that the
global minimum in Gibbs energy is determined con-
sidering only phases with specified compositions, but
non-linear methods are used to derive these specified
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and Kerrick, 1987; Connolly, 2005), is to completely

linearize the problem by approximating the continu-

ous spectrum of states defined by each  function

by a finite number of discrete phase states (Fig. 5a). The

stable assemblage is then found without iteration by

minimizing the Gibbs energy of the system (Eq. (19))

subject to mass balance (Eq. (20)) and non-negativity

(Eq. (21)) constraints, where Π is now the number of

discrete states. For an arbitrarily specified state of the

system, the stable discretized assemblage consists of c
discrete phase states. If more than one discrete state of

a phase is stable, then within the resolution of the dis-

cretization the states that are compositionally adjacent

correspond to a single phase in the real problem;

whereas discrete states that are separated by unstable

states of the same equation of state represent distinct

states in the real problem (e.g., immiscible states). The

virtues of the linearized formulation are its extraordi-

nary simplicity and that an optimization algorithm

(Simplex, White et al., 1958) can be selected that

assures convergence to a global minimum.

( )
i

kg x

The disadvantage of the linearized formulation is
that discretization of the states of a phase with many
compositional degrees of freedom generates a large
number of potential phase states. To illustrate the
magnitude of this problem consider that the discreti-
zation of a c − 1 dimensional function on a uniform
Cartesian grid with spacing δ generates

(24)

phase states. Thus discretization of a phase with eight
variable chemical components resolved at δ = 10−2

would generate ~1011 states, well beyond the limit of
~106 imposed by present day computational standards
(i.e., ~2 Gb of addressable memory). In such cases,
iterative refinement of the linearization can be used to
achieve resolution that is limited by machine precision
rather than memory (White et al., 1958). Within the
inherent limitations of a method with finite resolu-
tion, the non-iterative solution of the linearized prob-
lem is algorithmically certain. In contrast, the iterative
solution suffers from the possibility of convergence to
a local minimum. The origin of this weakness is that a
low resolution optimization may not identify the
phases that would be stable at higher resolution. To
minimize this risk it is essential to refine the discreti-
zation of phases that are nearly stable as well as those
that are stable. While the strategy implemented for this
purpose in Perple_X (Connolly, 2009) has proven
robust it, in common with all non-linear optimization
strategies, is not algorithmically certain.

PHYSICAL PROPERTIES

Given the equations of state  for the
possible phases of a system, Gibbs energy minimiza-
tion yields the amounts and compositions of the stable
phases of the system as function of its pressure, tem-
perature and composition. While the notion of using

 as the equation of state of a phase may
seem unduly complex in comparison to the simple
P-v-T relations such as the Birch-Murnaghan or Vinet
often discussed in mineral physics for pure phases, it
offers a consistent and compact means of summariz-
ing the information contained separately in the
caloric, mechanical and compositional equations of
state used to describe impure phases. This information
is trivially recovered from the thermodynamic identi-
ties that relate the Gibbs energy to internal energy,
enthalpy and the Helmoltz energy

u = g + Ts – Pv, (25)

h = g + Ts, (26)

f = g – Pv, (27)

− −

= − =

Π ≈

⎛ ⎞δ + δ − −
× + − +⎜ ⎟⎜ ⎟− − −⎝ ⎠
∑ ∑

1 1

2

2 1
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Fig. 5. Schematic illustration of the linearized formulation

(White et al., 1958, Connolly and Kerrick, 1987) of the
phase equilibrium problem for a binary (c = 2), isobaric-

isothermal, system with composition  in which all

possible states of matter are described by two equations of
state (dashed curves). Each equation of state is represented
by a finite set of points (circular symbols) and the solution
(filled circles in a) is obtained by linear programming.
If desired, the solution can be iteratively refined by
increasing the resolution of the discretization around a
solution obtained at lower resolution (filled circles in b).
To avoid convergence to local minima during iterative
refinement it is necessary to increase the resolution around
metastable states that are close to the g-x plane of the pre-

vious solution. 
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and various partial derivatives. From Eq. (8), the first
order derivatives of g yield

(28)

(29)

Second order properties such the isothermal bulk
modulus, isobaric expansivity, and the isobaric heat
capacity are then

(30)

(31)

(32)

In geophysics it is generally assumed that the time-
scale for seismic wave propagation is short compared
to the time-scale for thermal relaxation and therefore
that the associated deformation is better described by
adiabatic rather than isothermal elastic moduli. The
additional arithmetic necessary to express adiabatic or

isochoric derivatives in terms of  follows
assuming two zeroth-order homogeneous functions

 and , such as  and  from
Eqs. (28) and (29). Taking the total differential of

(33)

and differentiating with respect to x at constant z yields

(34)

From Euler’s chain rule for differentiation

(35)

and substituting Eq. (35) into Eq. (34)

(36)

The utility of Eq. (36) is apparent if a property such as
the adiabatic bulk modulus

(37)

is required. Mapping {s, v, P, T} → {z, f, x, y} in
Eq. (36) yields

(38)

and substituting Eq. (38) into Eq. (37) and expressing
s and v in terms of g

(39)

,s g T= −∂ ∂

= ∂ ∂ .v g P

∂ ∂
≡ − ∂ ∂ = −

∂ ∂2 2
( ) ,T T

g P
K v v P

g P

( ) ∂∂α ≡ =
∂ ∂ ∂ ∂ ∂

2
1 1

,P
P

gv
v T g P P T

2

2

( )
.P

g Ts ghc T
T T T

∂ + ∂∂≡ = = −
∂ ∂ ∂
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( , )f x y ( , )z x y ( , )s P T ( , )v P T

( , )f x y

( ) ( )y xdf f x dx f y dy= ∂ ∂ + ∂ ∂

( ) ( ) ( ) ( ) .z y x zf x f x f y y x∂ ∂ = ∂ ∂ + ∂ ∂ ∂ ∂
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⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂= − −⎢ ⎥⎜ ⎟
⎝ ⎠∂ ∂ ∂⎣ ⎦∂ ∂

For generality, it is expedient to approximate the par-
tial derivatives of the Gibbs energy needed to estimate
physical properties by finite difference operators.

Through manipulations of the type outlined above
it is possible to obtain all thermodynamic properties
with the exception of elastic shear moduli. This excep-
tion is a consequence of the fact that current thermo-
dynamic equations of state for phase equilibrium
models discount the minor energetic effect attribut-
able to non-hydrostatic stress (Dahlen, 1992; Con-
nolly, 2009). To date, shear moduli are computed from
ad-hoc empirical functions (e.g., Bina and Helffrich,
1992; Sobolev and Babeyko, 1994; Hacker and Abers,
2004) or from explicit formulations of the Helmholtz
energy as a function of the strain tensor (Stixrude and
Lithgow-Bertelloni, 2005). It is of course possible to
express the Gibbs energy of a non-hydrostatically
stressed solid as a function of its stress tensor components
(Callen, 1960). In such a formulation the shear modulus
can be expressed analogously to Eq. (39) in terms of par-
tial derivatives of the Gibbs energy with respect to the six
stress tensor components and temperature.

The partial derivatives of the equations of state of
individual phases of a system do not account for pro-
cesses of inter-phase chemical equilibration that occur in
response to changing pressure and temperature. Given
that the time-scale for inter-phase equilibration is orders
of magnitude greater than that for thermal equilibration,
the use of such derivatives, designated “isomorphous”
derivatives (Stixrude and Lithgow-Bertelloni, 2011), is
appropriate for the evaluation of properties relevant to
seismic studies. In contrast, for the longer time scales
typical of geodynamic processes such as mantle convec-
tion, it is reasonable to assume inter-phase equilibrium is
maintained, in which case the physical properties of the
system are best estimated by differentiation of the Gibbs
energy of the system, rather than from the isomorphous
derivatives of its constituent phases. Elsewhere (Connolly
et al., 2009) it has been remarked that because the deriv-
atives of the Gibbs energy are singular during low order
phase transformations (p > c), the formulation of govern-
ing equations in terms of the natural variables (s, v, xk) of

the internal energy may be preferable to the natural vari-
ables of the Gibbs energy (P, T, xk). Such a reformulation

does not necessarily require direct optimization of the
internal energy.

CONCLUDING REMARKS

Gibbs energy minimization yields a numeric equa-
tion of state from which it is possible to recover all
thermodynamic properties of an equilibrium thermo-
dynamic system. An unfortunate consequence of the
non-linear character of the optimization problem is
that there is no means of propagating the uncertainties
in the equations of state of individual phases short of
expensive Monte Carlo methods (Connolly and
Khan, 2016). This difficulty has contributed to the
false perception that simple parameterizations of
experimentally determined phase relations and prop-
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erties are more reliable than thermodynamic methods.
Thermodynamic data bases and simple parameteriza-
tions are ultimately based on the same underlying
data, but, in practice, thermodynamic data bases are,
invariably, derived by sampling a broader spectrum of
experimental data. Thus a pragmatic solution to the
problem of assessing the uncertainty of properties
derived by Gibbs energy minimization is to rely on
parameterizations of that uncertainty.
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