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We analyze the mechanical behavior of a two-phase system consisting of rigid grains and an interconnected
pore fluid. For this purpose we use 2D direct numerical simulations on the spatial scale of individual grains
for Newtonian and non-Newtonian fluid rheology. By using the stress–strain rate relation we derive scaling
laws for effective viscosity of two-phase particle suspensions. We demonstrate that the effective rheology of
the assemblage is non-Newtonian only if the fluid has a non-Newtonian rheology. At small fluid fraction,
inter-granular strain rates are up to 3 orders of magnitude higher than the applied background strain rate.
We suggest that this effect explains the experimentally observed change at higher strain rates in rheology,
from Newtonian to non-Newtonian aggregate rheology.
To establish the conditions at which the fluid–solid aggregate deforms coherently as a consequence of
Rayleigh–Taylor instabilities we studied flow patterns of particle suspensions and characterized them as a
function of fluid fraction, viscosity, density, shape and size of the grains. From initial conditions with
homogeneously distributed grains and interstitial fluid above a layer of pure fluid, our results show that the
Rayleigh–Taylor instability dominates for moderate to large fluid fractions. At large fluid fractions, we
observed a transition to a Stokes suspension mode, in which grains do not interact but sink independently.
An analytical expression is derived that predicts the transition from Rayleigh–Taylor instability to Stokes
suspension mode. The transition is a function of fluid fraction, radius of the grains, height of the interface and
initial amplitude. Systematic numerical simulations are in good agreement with the analytical predictions.
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1. Introduction

The dynamical and mechanical behaviors of particle suspensions
have been examined experimentally and numerically (e.g. Ward and
Whitmore, 1950; Arzi, 1978; Phan-Thien et al., 1991; Pinkerton and
Stevenson, 1992; Lejeune and Richet, 1995; Costa, 2005; Caricchi
et al., 2007; Costa et al., 2009). However, the effective aggregate
rheology, i.e. stress and strain rate relations of particle bearing fluids is
still in debate. We study the mechanical processes of two-phase
particle suspensions by using direct numerical simulation on the
spatial scale of individual grains, i.e. the Stokes equations are solved
directly on grid points outlining each separate grain. This method
facilitates the analysis and allows us to study the basic physical
behavior of the dynamics of partially molten systems.

A number of studies have addressed the problem determining the
viscosity of a particle suspension in Newtonian fluids as a function of
particle concentration or fluid fraction, respectively. The most
prominent of these is the theoretical analysis of Einstein (1906),
which was modified to account for higher particle fractions by Roscoe
(1952); Rutgers (1962b) reviews many similar efforts. Experimental
observations (e.g., Vand, 1948; Ward andWhitmore, 1950; Arzi, 1978
or Marsh, 1981) support the theoretical models and serve as a
calibration of parameters. Arzi (1978) and Rutgers (1962a) were
aware of the problem of time-dependent deformation of partially
molten rocks but could not quantify this effect. Recent experimental
studies show a transition from Newtonian to non-Newtonian
behavior with increasing higher particle fraction (e.g. Pinkerton and
Stevenson, 1992; Lejeune and Richet, 1995; Caricchi et al., 2007;
Champellier et al., 2008). Numerous attempts have been undertaken
to expand the study of effective viscosities of particle suspensions to
account for non-Newtonian rheology (e.g. Krieger and Dougherty,
1959; Gay et al., 1969; Krieger, 1972; Jeffrey and Acrivos, 1976; Costa
et al., 2009; Cordonnier et al., 2009; Petford, 2009, for a review) and to
derive constitutive relations between strain rate and stress for high
particle fractions. Cordonnier and coworkers obtain an expression for
effective viscosity of crystal-bearing melts that is a function of stress
and a so-called stress dependency factor, which is a function of fluid
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Fig. 1. Filled-box model showing pure shear boundary conditions and other parameters
(Table 1). A layer of fluid is separating the grains from the boundary. Due to boundary
effects effective properties are only computed in the inner box (dashed square).
Depending on the test, shape and size of the grains, fluid fraction and density contrast
are varied.
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fraction and derived from experimental data. Costa and coworkers fit a
four parameter function to experimental data for effective viscosity as a
function of strain rate. The disadvantage of suchmodels is that they use
empirically derived parameters that obscure the underlying physics.

Computational studies have also contributed to the understanding
of suspensionmechanics, e.g., the theory of Stokesian dynamics (Brady
and Bossis, 1988) accurately solves the flow of spherical suspending
particles in a incompressible viscous fluid and Phan-Thien et al. (1991)
use boundary element methods to solve the Stokes equations.
However, computational methods have been limited to linear viscous
(Newtonian) rheology and, almost invariably, spherical particles.
Studies, which considered the influence of non-spherical particles
showed that this does have an influence on flow patterns (e.g. Cleary,
2008), but the effective rheology of a suspension composed of
spheroids or cubes was found to be similar to that of a suspension
with spherical particles (Phan-Thien et al., 1991). Saar et al. (2001)
used statistical models to study how the yield strength of a crystal-
bearing magma depends on the particle shape, but it is difficult to
estimate the effective rheology of an aggregate from this work.

In our study we employ numerical simulations with the goal of
deriving scaling laws for the effective rheology of Newtonian and non-
Newtonian two-phase systems. The first part of our analysis focuses
on the analysis of viscosities of two-phase particle suspensions as a
function of fluid fraction, strain rate, grain shape and size. The second
part characterizes the flow patterns of particle suspensions. For all
these analyses we use numerical models based on the finite element
method (FEM). Numerical details are only very briefly outlined. The
major focus of this paper is set on the description of the physical
behavior of two-phase systems.

2. Model formulation: equations, numerical technique
and model setup

Our mechanical model is for incompressible, Stokes flow of either
Newtonian or non-Newtonian fluids. Both phases, the fluid and solid
phases (melt and grains, respectively), are described by Stokes
equations on the spatial scale of the individual grains. The governing
equations are:

∂vi
∂xi

= 0; ð1Þ

∂σij

∂xj
= ρgi; ð2Þ

σ̃ ij = 2μeff ε̇ij; ð3Þ

ε̇ij =
1
2

∂vi
∂xj

+
∂vj
∂xi

 !
; ð4Þ

σij = −δijP + σ̃ ij; ð5Þ

where vi denotes velocity, σ̃ij deviatoric stress, σij total stress, ε·ij
strain rate, P pressure, μeff effective viscosity, ρ density, gi gravitational
acceleration, δij the Kronecker delta and μeff is defined in Eq. (6) and
Newtonian or non-Newtonian rheology is specified by choosing the
power law coefficient n accordingly.

Non-Newtonian rheology is implemented by solving the system
using the iteratively derived effective viscosity

μeff = μ0ðε̇II =ε̇0Þð1=n−1Þ
; ð6Þ

where ε·II is the second invariant of the strain rate tensor, μ0 the
characteristic viscosity and ε·0 the characteristic strain rate, note that
in most experimentally derived flow laws ε·0=1. (Details to Eq. (6)
are given in Appendix A.) Iteration is performed until the error for the
velocity solution is sufficiently low, in this case smaller than 0.1%. For
n=1 the system is fully Newtonian and iterations are omitted.

The equations are solved using the finite element (FE) code MILAMIN
(Dabrowski et al., 2008), which is a 2DMATLAB®-based Stokes solver. To
obtain accurate solutions given the large viscosity gradients in a melt–
grain system, we use a Lagrangian mesh with P2−P0 7-node Crouzeix–
Raviart triangular elements (Cuvelier et al., 1986), which follow exactly
the melt–grain boundaries. The geometry-adapted mesh is generated
using TRIANGLE developed by Shewchuk (1996). This method has yield
better accuracy than finite difference methods (FDM) or FEM with non-
body-fitted meshes (Deubelbeiss and Kaus, 2008) for our problem
configuration.
3. Effect of rheology on particle suspensions

To study the mechanical behavior as a function of material
parameters and melt fraction we use a filled-box model, in which
the initial spatial domain is a 2D box filled with homogeneously
distributed high viscosity grains and interstitial melt (Fig. 1). The
solid/melt viscosity contrast is 106, while this is less than the solid/
melt viscosity contrast of natural systems (N1015, McKenzie, 1984), it
is adequate to describe the flow of an aggregate in which essentially
all deformation is localized in the fluid. Tests of Schmid and
Podladchikov (2003) (see their Fig. 2) showed that for effective
viscosity contrasts N103 the grains behave as rigid particles.
Additional tests to evaluate the influence of the rheology of the
solid phase on the aggregate were performed and showed that the
aggregate rheology is only affected by the fluid rheology, therefore a
constant power law coefficient of n=1 for the solid phase is assumed.
Hereafter we only refer to power law coefficients of the fluid phase.
We apply pure shear background strain rate boundary conditions.
Model parameters (Table 1) are non-dimensionalized by using the
characteristic scales given in Table 2, and all numerical calculations
are done in non-dimensional form.



Fig. 2. Aggregate viscosity versus fluid fraction derived from numerical simulations
using the stress–strain rate relationship (Eq. (7)). The aggregate viscosity is non-
dimensional. (a) Double-logarithmic scale: Results are shown for three different grain
shapes where for each of it an asymptotic curve is fitted. The expressions for the
aggregate viscosity are for spheres μ0agg=μfluid (1−Sϕs)−1.8 (S=1/0.91), for hexagons
μ0agg=μfluid (1−Sϕs)−2.8 (S=1) and for squares μ0agg=μfluid (1−Sϕs)−3.2 (S=1).
(b) Semi-logarithmic scale: The results from (a) and additionally the Einstein–Roscoe
relationship are shown (see text for details).

Table 2
Characteristic scales of the filled-box model.

Characteristic scale Value

Char. length scale Lc=H
Char. viscosity μc=μfluid

Char. time scale tc=1/εḂG
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3.1. Effective properties of particle suspensions

The effective properties of two-phase systems are investigated for
Newtonian and non-Newtonian fluid rheology. The aggregate viscos-
ities are derived by the macroscopic stress–strain rate relationship
(Eq. (3), n=1), i.e. the aggregate viscosity is

μagg =
σ̃ agg

2ε̇agg
; ð7Þ
Table 1
All physical filled-box model parameters are non-dimensionalized by using the
characteristic scales (Table 2).

Model parameter Value

Width of domain W=1
Height of domain H=1
Viscosity of grains μgrain=106 *
Viscosity of melt After Eq. (6), for n=1: μfluid=1
Density of grains ρgrain=2
Density of melt ρfluid=1 *
Strain rate ε̇BG=1 *

* varied for specific tests (stated in text).
where σ̃ agg and ε·agg are the deviatoric stresses and the strain rates
averaged over the elements. Note that in the pure shear case for σ̃̃ and
ε· only pure shear components are used. The average values are
calculated as follows: For each element an average value is derived by
taking the mean of the values at the integration points and multiplied
by the area of the element. The average of the total aggregate is then
the sum of the element-wise averaged values divided by the sum of
the area of each element. The effective properties are determined
instantaneously before the grains move.

3.1.1. Newtonian rheology
Generally, the aggregate viscosity decreases with increasing fluid

fraction (Fig. 2). Tests show that different viscosity contrasts do not
influence the aggregate viscosity, provided the viscosity contrast is
N103. The influence of grain size at constant fluid fractionwas found to
be negligible and the influence of the grain shape (spheres, hexagons,
and squares) assuming high sphericity was found to be rather small,
which is in agreement with previous findings (e.g. Phan-Thien et al.,
1991). We use an asymptotic formulation to fit our numerically
derived aggregate viscosities. This formulation is based on the
Einstein–Roscoe equation (Ward and Whitmore, 1950; Roscoe,
1952), which is the modified formula of Einstein (1906) for
suspensions with high particle concentrations and is given by

μagg
0 = μ fluidð1−SϕsÞ−2:5

;with ð8Þ

ϕs = 1−ϕ; ð9Þ

S =
1
ϕ∞
s
; ð10Þ

where ϕs is the particle fraction and ϕ the fluid fraction. S is a
parameter controlling the asymptotic limit where the aggregate
viscosity rises to infinity. S is the inverse of the maximum packing
density ϕs

∞.
The aggregate viscosities for 2D particle suspensions as a function

of fluid viscosity μfluid and fluid fraction ϕ (or particle fraction, Eq. (9))
(Fig. 2) were fitted for spheres (in 2D actually cylinders), hexagons
and squares (with high sphericity) and are given by

μagg
0 = μ fluidð1−SϕsÞm; ð11Þ

with the following parameters for
Spheres
 m=−1.8,
 S=1/0.91

Hexagons
 m=−2.8,
 S=1

Squares
 m=−3.2,
 S=1
The original results of Roscoe compare well with our empirical
relations (Fig. 2b); the discrepancies are most likely due to 2D–3D
effects. In 3D, two physical end members for the range of aggregate
viscosities are given by an expression on one side for a suspension of
equally sized spheres and on the other side for very diverse sized
spheres. In case of equally sized spheres the maximum packing
density ϕs

∞ is 0.74, which gives an S=1.35. In case of very diverse
sized spheres ϕs

∞≈1, which yields an S=1. This represents an infinite
diversification of particle sizes that can fill up the whole pore space.
The factor S is therefore related to maximum packing density of the



Fig. 4. Two-layer model showing free slip boundary conditions and other parameters
(Table 3). Initial tests without sinusoidal perturbation but slightly perturbed individual
grains always developed instabilities with parameter specific dominant wavelengths
(Rayleigh–Taylor instability, discussed in Section 4.1). For systematic testing and
aggregate viscosity calculations a sinusoidal perturbation with initial amplitude A0 of
one wavelength corresponding to the box size W is implemented. Depending on the
test shape and size of the grains, fluid fraction, density contrast and box size were
varied.
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solid particles. It is common that workers tune S in order to
adequately describe a melt–grain suspension of experimental data
(Roscoe, 1952; Marsh, 1981; Pinkerton and Stevenson, 1992). The
reason why our 2D numerical results are shifted to the limit of very
diverse spheres is most likely related to themaximumpacking density
ϕs
∞ for closest packed spheres (2D), which is in the case of 2D at

ϕs
∞=0.91. The hexagons and the squares have maximum packing

densities ϕs
∞=1 due to the highly ordered arrangement of the

particles of equal size. However, the reason for the smaller exponent
m of −3.2 for squares or −2.8 for hexagons instead of −2.5
(Einstein–Roscoe) is not fully clear.

3.1.2. Non-Newtonian rheology
In non-Newtonian suspensions effective aggregate viscosity is not

only dependent on fluid fraction but also on strain rate. To evaluate
this latter dependence we computed the effective aggregate viscosity
directly for different fluid fractions, strain rates and power law
coefficients and derived the following expression for the non-
Newtonian effective aggregate viscosity by fitting the numerical
results for spheres and hexagons:

μagg
eff = μ fluid

eff ð1−SϕsÞmðϕmÞð1=n−1Þ
; ð12Þ

μ fluid
eff = μ fluid ε̇BG

ε̇0

� �ð1=n−1Þ
; ð13Þ

with the same parameters for spheres (m=−1.8, S=1/0.91) and
hexagons (m=−2.8, S=1) as given for Eq. (11). μ eff

fluid is the effective
fluid viscosity and dependent on the applied background strain rate of
the aggregate (ε̇BG), the characteristic strain rate ε̇0 and the fluid
viscosity μfluid, ϕs is the particle fraction (1−ϕ) and n the power law
coefficient.

The dependence of the effective aggregate viscosity on the factor
(ϕm)(1/n−1) can be explained analytically with a 1D model as shown
in Appendix C. This factor originates from higher strain rates occurring
in the fluid compared to the applied background strain rate. With
decreasing fluid fraction, the strain rates in the fluid are increasing.
The higher strain rates directly affect the effective viscosity in the
fluid. The ratio of the effective aggregate viscosity versus the effective
Fig. 3. Effective aggregate viscosity as a function of strain rate for different fluid
fractions (ϕ=0.15 and 0.71) and power law coefficients (n=1 to 4) using spherical
grain shapes. Effective aggregate viscosities and strain rates are given in non-
dimensional units. With increasing strain rate and fluid fraction the effective aggregate
viscosity is decreasing. For n=1 the particle suspension has constant aggregate
viscosities (Eq. (11)). The results using the analytical expression for the effective
aggregate viscosity (Eq. (12)) are shown exemplified for ϕ=0.71 and n=2. The
analytical results are in good agreement with the numerical results.
background viscosity depends on the fluid fraction and the power law
coefficient. The relation of the exponent m of −1.8 for spheres or
−2.8 for hexagons remains to be explained, but is likely related to the
shape of the particles as described in Section 3.1.1.

Numerical results of simulations with spherical and hexagonal
grain shapes at different fluid fractions compare well with the
effective aggregate viscosities predicted by Eq. (12) (Fig. 3). The
effective aggregate viscosity decreases with increasing fluid fraction
and increasing strain rate. The change in the effective aggregate
viscosity with strain rate is (1/n−1), which corresponds to the power
law coefficients in Eq. (12). In contrast, for Newtonian rheology
(n=1) of the fluid phase the aggregate viscosity remains constant
throughout the computed range of strain rates, i.e. suspensions of
rigid particles only behave non-linearly if the fluid phase has a non-
Newtonian rheology. Effects of different grain shapes and sizes are
minor.

4. Flow patterns of particle suspensions

To study flow patterns as a function of fluid fraction and fluid
rheology we use a two-layer model (Fig. 4) consisting of a layer of
homogeneously distributed high viscosity grains and interstitial melt
overlying a layer of pure melt. The two-layer model is driven by
gravity applying free slip boundary conditions at all four sides of the
domain. All model parameters (Table 3) are non-dimensionalized by
using the characteristic scales given in Table 4.

4.1. Rayleigh–Taylor instability mode

Initial tests of two-layer models (Fig. 4) with only slightly
perturbed individual grains (perturbation: 0.1% of grain radius) rather
Table 3
All physical two-layer model parameters are non-dimensionalized by using the
characteristic scales (Table 4).

Model parameter Value

Width of domain W=λ *
Height of domain H=1
Viscosity of grains μgrain=106 *
Viscosity of melt μfluid=1 or after Eq. (6) for non-Newtonian rheology
Density of grains ρgrain=2
Density of melt ρfluid=1 *
Gravity g=1
Amplitude A0=0.0064

* varied for specific tests (stated in text).



Table 4
Characteristic scales of the two-layer model.

Characteristic scale Value

Char. length scale Lc=H
Char. viscosity μc=μfluid

Char. stress σc=ΔρgH
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than using the sinusoidal perturbation with initial amplitude as
displayed in Fig. 4, show strong interactions between individual
grains. The layer of grains (top layer) behaves as a homogeneous layer
with aggregate viscosity (Eq. (11)) and density resulting from the two
phases. The flow patterns have the characteristics of Rayleigh–Taylor
(RT) instabilities resulting from a density inversion (e.g. Biot and Odé,
1965; Burg et al., 2004) or in other words, in our two-layer setup the
RT instabilities are characterized by the amount of particles in the top
layer, which results in an aggregate density.

Thus, with the two-layer setup we estimate the aggregate
properties of the two-phase top layer by making use of the analytical
solution for RT instabilities (Biot and Odé, 1965; Whitehead, 1988).
The growth rate of the instability is a function of viscosity, density,
gravity, wavelength and height of interface of two homogeneous
layers. All physical parameters of the lower (pure melt) and top
(melt–grain mixture) layer are known except the aggregate viscosity
of the top layer, assuming that the aggregate density is an arithmetic
average of the densities of each phase fraction. By systematically
measuring the growth rate and comparing the numerical calculated
growth rates with the analytical solution it is possible to fit a value for
the aggregate viscosity of the two-phase top layer. In the mode where
the instability can be described by the Rayleigh–Taylor limiting
model, the density contrast between grains and the fluid does not
affect the aggregate viscosity. These results are generally in agreement
with the formerly directly calculated aggregate viscosities using the
filled-box model (Eq. (11)), however aggregate viscosities derived
through RT instabilities are typically larger (see Appendix B).

4.2. Transition from Rayleigh–Taylor instability to Stokes suspension
mode

The homogenization and collective behavior of the grains in
suspension is only valid up to a certain fluid fraction, where a clear
transition is observed from the development of RT instabilities to a
mode in which the grains simply sink through the fluid, the Stokes
suspension mode. Such transitions have been observed experimentally
by Bagdassarov et al. (1996), who describe the transition between
different percolation processes analytically. However, a thorough
discussion on the different governing parameters is missing. We define
this transition analytically to be the condition at which the velocity of
the growing RT instability (Eq. (14)) is the same as the velocity of
sinking particles (Eq. (15)), the Stokes velocity. The Stokes velocity used
for this analysis is based on the equation for a sinking infinite cylinder
(2D) inside a finite box (Slezkin, 1955; Popov and Sobolev, 2008).

VRT = qdomA0; ð14Þ

VSTOKES = f
Nr2Δρg
4μ fluid

; ð15Þ

N = lnðkÞ− k2−1
k2 + 1

; ð16Þ

k =
d
r

ð17Þ

Eq. (15) is modified in a way to adapt amulti-cylinder problem, where
N is here the correcting factor for the influence of the neighboring
particles (Eq. (16)) rather than the wall effect described in Popov and
Sobolev (2008). d is the distance between two grains (outer boundary
of the grain) and r is the radius of the grain (Eq. (17)). The factor f
(Eq. (15)) corrects for the offset between the analytics and the
numerics. g is gravity, Δρ the density difference and μfluid the fluid
viscosity.

The solution for the dominant growth rate qdom (the wavelength
for which the instability grows fastest) is a function of gravity, height
of interface, density difference and viscosity contrast between the top
two-phase and bottom layer. The derivation of the equations for two
layers with one intersecting boundary is given e.g. by Ramberg (1968)
(see also Kaus, 2005, Chp. 7). For our study we use this full
perturbation analysis as well as a simplification of the full set of
equations. For simplification we derive a scaling law for the dominant
growth rate qdom of a RT instability with free slip boundary conditions
and an interface at location Hi/H, where Hi is measured from the
bottom. The full form shows clearly defined regions where qdom is
constant within a certain parameter space for Hi/H and R. For the most
relevant parameter space we derived a law, which is valid for viscosity
contrasts larger than about 1000 and Hi/H larger than about 0.3 and is
given in dimensionless form by

qdom =
1
4
R−1 1−Hi

H

� �
; ð18Þ

R =
μ top

μ fluid
; ð19Þ

where R is the viscosity contrast of the two-phase top layer (μtop) and
the underlying fluid layer (μfluid). μtop is equivalent to μ0

agg (Eq. (11))
of the top layer, μtop is used as a simplification. Implementing
Eqs. (18) and (19) in dimensional form using the characteristic
growth rate qc=ΔρgH/μfluid in Eq. (14) leads to

VRT =
1
4

A0 1−Hi

H

� �
ð1−ϕÞΔρgH
μ top

: ð20Þ

The relative importance of the RT and Stokes suspensionmode can
be assessed from the parameter Yo=VRT/VSTOKES. After substituting
the expression for μtop (Eq. (11)) in Eq. (20) and Eqs. (16) and (17) in
Eq. (15) we obtain

Yo =
A0ðH−HiÞð1−ϕÞðd2 + r2Þ

f ðlnðd= rÞd2 + lnðd = rÞr2−d2 + r2Þr2ð1−Sð1−ϕÞÞm: ð21Þ

The distance between two grains d can be replaced by an
expression dependent on fluid fraction ϕ and radius of the grains r.
This expression is given for spheres (2D) and hexagons by

dspheres =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2π

2
ffiffiffi
3

p
ð1−ϕÞ

s
−r; ð22Þ

dhexagons =
rffiffiffiffiffiffiffiffiffiffiffi
1−ϕ

p −r: ð23Þ

For hexagons using for d Eq. (23) and for μtop Eq. (11) (m=−2.8
and S=1) Yo results in

Yo

=
A0ϕ

2:8ðH−HiÞð1−ϕÞððr=
ffiffiffiffiffiffiffiffiffiffiffi
1−ϕ

p
−rÞ2 + r2Þ

f ðlnððr =
ffiffiffiffiffiffiffiffiffiffiffi
1−ϕ

p
−rÞ= rÞðr=

ffiffiffiffiffiffiffiffiffiffiffi
1−ϕ

p
−rÞ2 + lnððr =

ffiffiffiffiffiffiffiffiffiffiffi
1−ϕ

p
−rÞ= rÞr2−ðr=

ffiffiffiffiffiffiffiffiffiffiffi
1−ϕ

p
−rÞ2 + r2Þr2:

ð24Þ

Yo is thus a function of fluid fraction ϕ, radius of the grains r,
height of the interface H and initial amplitude A0. A transition from RT
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to Stokes suspension mode is expected at Yo=1when the RT velocity
and the Stokes velocity are equal.

To assess the accuracy of our analytical expression we perform
numerical simulations. To classify the numerical results we use the
numerical transition number (NTR), defined as

NTR =
jVcenter j + jVbound j

signðVcenterÞ
; ð25Þ

where Vcenter is the velocity in the center of the boundary between the
lower and upper layers and Vbound is the velocity at the boundary of
the box between the lower and upper layers (Fig. 5). If NTR is positive
then the center velocity has a positive value, meaning that and
upward RT instability is occurring, while negative NTRs imply that
grains are sinking everywhere and indicate a Stokes suspensionmode.

The transition from RT instability to Stokes suspension mode
(Yo=1) predicted by our simplified expression (Eq. (24)) and by the
complete perturbation analysis for hexagonal grains is depicted in
Fig. 6. The numerical results for simulations performed for different
grain sizes and distances between grains are plotted with the
analytically derived transition (Fig. 6a). The analytical transition
(Yo=1) using the perturbation analysis is in agreement with the
numerical results. The dependence of Yo=1 on fluid fraction ϕ and
radius r (Fig. 6b) shows that even for variations of A0/H or Hi/H, large
fluid fractions are required to achieve the Stokes suspension mode.

4.3. Flow patterns for randomly perturbed systems

The influence of fluid rheology on the flow pattern was studied
starting with randomly perturbed grains and a box several times the
size of the developing dominant wavelength. Here, we assume a two-
layer model that has in both layers two phases. The upper layer has a
fluid fraction of ϕtop=0.31 and the lower one has smaller grains and a
Fig. 5. Numerical simulations of two-phase two-layer model with an interface at Hi/
H=0.5. For ϕ=0.61, where r=0.029 and d=0.03 the NTR is positive representing a
RT instability, while for ϕ=0.97, where r=0.076 and d=0.07 the NTR is negative and
all grains directly sink down. The color scale indicates the vertical velocity.
fluid fraction of ϕbottom=0.48. The simulation with Newtonian
rheology (Fig. 7, top) shows development of RT instabilities with a
wavelength λ≈2/H. This value is also predicted by the analytical
solution for the dominant wavelength for the corresponding aggre-
gate viscosities. The simulation with non-Newtonian rheology (n=2
for the fluid phase) (Fig. 7, bottom) still develops the large scale RT
instabilities of the same wavelength. One can argue whether there are
smaller scaled channels formed that localizes the deformation,
however to prove this more systematic simulations are required.

5. Discussion on rheology: comparison with experiments

The numerical results of the effective aggregate viscosity of
particle suspensions for different rheologies as described in the
previous sections reveal an abrupt reduction in the effective aggregate
viscosity at melt fractions between 10 and 30% irrespective of the
rheology. This is a common experimental observation (e.g. Vand,
1948; Ward and Whitmore, 1950; Arzi, 1978; Lejeune and Richet,
1995; Caricchi et al., 2007). Additionally, it is commonly observed that
aggregate rheology becomes non-Newtonian at high particle fractions
(e.g. Krieger, 1972; Jeffrey and Acrivos, 1976; Pinkerton and
Stevenson, 1992; Stickel and Powell, 2005; Costa, 2005; Caricchi
et al., 2007; Cordonnier et al., 2009, for a review). Experiments of
Caricchi et al. (2007) show that the effective aggregate viscosity is not
only dependent on fluid fraction but also on strain rate. This non-
Newtonian behavior was observed between about ε·shear=10−5 s−1

and ε·shear=10−3 s−1. While Caricchi and coworkers's results show
non-Newtonian behavior (i.e. strain–rate dependent effective viscos-
ity) only above a certain strain rate, our numerical results using non-
Newtonian rheology described by Eq. (12) showed this effect over the
whole range of strain rates. On the other hand, simulations using a
power law coefficient of n=1 showed independent of the strain rate
the same effective aggregate viscosity. This implies that our modelled
system only behaves non-linearly if the melt has a non-Newtonian
rheology (Fig. 3). This is in contrast to the statement of Caricchi and
coworkers who suggest that the non-Newtonian behavior they
observe in their experiments is induced by a rearrangement of grains,
while the melt itself behaves Newtonian. Their assumption that melt
is Newtonian is based on experiments of pure melt performed by
Webb and Dingwell (1990) giving a range of temperature and strain
rates where the fluid (melt) phase does not exceed the “relaxed”
Newtonian mode. A non-Newtonian behavior of the melt, however,
was observed for higher strain rates (e.g. N5×10−5 s−1 for a shear
viscosity of 1012 Pa s). It is thus important to understand what the
strain rate of the melt is inside a deforming two-phase aggregate.

5.1. Can locally enhanced strain rates explain non-Newtonian behavior?

Numerical models using either Newtonian or non-Newtonian
rheology show that the applied background strain rate of the system is
not the local strain rate distribution inside the system (Fig. 8).
Channels form between the grains, where the strain rates of the
second invariant are significantly larger than the applied background
strain rate. The excess of strain rate is ε·II,max/ε·BG=48 for a fluid
fraction of 0.23 with spherical shaped grains. In order to understand
the dependency of εİI,max on fluid fraction, we performed systematic
numerical simulations that were fitted with an asymptotic formula-
tion (Fig. 9). Results show that ε·II,max is a function of the background
strain rate ε·BG, fluid fraction ϕ and geometry factor S known from the
Einstein–Roscoe equation (Eq. (8)) and are given for 2D spherical
shaped grains and for hexagons by

ε̇II;max = 2ε̇BGð1−SϕsÞm; ð26Þ

with m=−1.6 and S=1/0.91 for spheres and m=−2.4 and S=1
for hexagons. The formula obeys two limits: One limit is theminimum



Fig. 6. Transition from RT mode to the Stokes suspension mode for hexagonal shaped grains (a) as a function of fluid fraction ϕ, normalized radius of the grains r and the normalized
distance between two grains d for an interface at Hi/H=0.5 and initial amplitude A0/H=0.0032. The color map represents the ϕ-distribution as a function of r and d (for hexagons
ϕ=1−r2/(r+d)2). Yo=1 is shown for the simplified analysis as derived in the text and for the full form of the perturbation analysis. Black dots are numerical simulations with
positive numerical transition numbers (NTR) and the white squares are numerical simulations with negative NTRs, (b) as a function of fluid fraction ϕ, normalized radius of the
grains r for different initial amplitudes A0/H and height of interfaces Hi/H.
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value of ε·II,max/ε·BG=2. This limit is based on the analytical solution of
the perturbation flow field around a rigid circular grain, which reaches
a finite maximum strain rate that is twice the applied far-field strain
rate, for both simple and pure shear, independent of inclusion size
(Schmid and Podladchikov, 2003). The second is an asymptotic limit
and is given by the maximum packing density σs

∞, which is for 2D
spheres 0.91, i.e. for a fluid fraction of ϕ=0.09 ε̇II,max/ε̇BG increases to
infinity. The same occurs for hexagons at a fluid fraction of 0, therefore
the increase to infinity is not visible in Fig. 9.

For ϕ≈0.12 the maximum strain rate ε̇II,max is 2.5 orders of
magnitudes higher than the applied background strain rate and
reaches more than 4 orders of magnitude for ϕ≈0.03. The
influence of the different grain shapes and the influence of the
power law coefficient (Fig. 9) are small compared to the effect of
increasing strain rate with decreasing fluid fraction. The increase in
strain rate is occurring in the same manner for Newtonian
rheology as for non-Newtonian rheology. The increase of the
maximum strain rate is related to a decrease in effective viscosity
inside the fluid. This effect can be explained analytically with a 1D
model (Appendix C).

Such local strain rate focusing might be one of the reasons to
overcome the threshold, where pure melt rheology changes from the
Newtonianviscous to thenon-Newtonianviscous regime.Weshow that
strain rates are locally larger and hence the fluid rheology may be non-
Newtonian, even though the background strain ratewould indicate that
results are still in the Newtonian regime. While Caricchi and coworkers
assume their experiments were in the “relaxed” Newtonian regime,
they might locally already be above the threshold given by Webb and
Dingwell (1990) where melt behaves non-linearly.

Changes in microstructures (rearrangement of the grains) under
shear inside the system (Völtz et al., 2002; Stickel and Powell, 2005;
Caricchi et al., 2007) are sometimes cited as a reason for strain rate
dependent viscosities. Similarly, Arbaret et al. (2007) observe non-
Newtonian behavior as a result of shape preferred orientations (SPO)



Fig. 7. Typical flow patterns for different rheologies using a two-layer model. Both layers have two phases, where ϕtop=0.31 and ϕbottom=0.48. The Newtonian and the non-
Newtonian simulation show Rayleigh–Taylor (RT) instabilities of a wavelength λ≈2/H, which is predicted by the analytical solution.
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of non-spherical particles. These microstructures might cause a
decrease of the aggregate viscosity for higher strains. The two-phase
system has an effectively smaller anisotropic viscosity due to
microstructural effects rather than a strain rate dependent viscosity.
Finite strain analysis shows that for weak particles SPO develop and
this results in an overall mechanical anisotropy, that lowers the
aggregate viscosity (Dabrowski, 2008; Dabrowski et al., 2009). While
for hard particles the reordering effect may increase the effect of
locally enhanced strain rates, where channels locally become even
smaller. Strain localization within the melt, which is even stronger for
smaller fluid fractions might result in high strain rates that are locally
built up, hence the melt has a significant amount of contact with the
melt channel walls. Our suggestion is that this modifies the effective
aggregate rheology of the melt.

Hess et al. (2008) hypothesize that shear heating induces the non-
linear behavior of themelt viscosity, however, their experimentswere
performed for homogeneous samples in which the shear strain rate is
likely to be homogeneous. But, as just demonstrated, shear strain rates
are heterogeneous in two-phase media, which is thus likely to affect
the effective rheology of the aggregate. However, to confirm this
hypothesis experiments, which consider the effects of elasticity, shear
heating and finite strain are required.
Fig. 8. Distribution of the ratio of strain rate of second invariant and background strain rate (
there are channels where the actual strain rate is much higher than the applied backgroun
5.2. Complex versus simplified models

The analysis presented here uses a simplified model to describe
mechanical processes in two-phase particle suspensions. The dynam-
ical and mechanical processes may be much more complex in nature
due to spatial heterogeneities of material properties in partially
molten systems. Additionally, different processes may compete and
overlap due to coupling of different processes such as transport of
melt, melting, deformation of fluid and solid material or thermal
effects due to shear heating. Costa (2005) argues that it is impossible
to develop a simple description of the rheology of particle suspensions
because such systems are subjected to different forces such as
thermal, electrical and hydrodynamic interactions and moreover
particle shapes and particle size distributions play an important role.
For this reason, Costa (2005) advocates the use of empirical functions.
The draw-back of such a strategy is that empirical parameters have no
physical meaning.

In our models the effective aggregate viscosities are calculated
after the first time step before the grains start to move. Therefore
effects due to a rearrangement of the particles under shear are not
directly taken into account in our model. Such an effect as well as the
relative importance of elasticity, shear heating and finite strain in
ε̇II/ε̇BG) inside the melt–grain system for a fluid fraction of ϕ=0.23. Between two grains
d strain rate. Here the excess of strain rate is ε̇II,max/ε̇BG=48.



Fig. 9. The maximum strain rate of the second invariant ε·II normalized by the
background strain rate ε·BG as a function of fluid fraction ϕ. The power law coefficient
has hardly any effect on the general trend of increasing ε·II,max with decreasing ϕ. ε·II,max

for spheres (2D) is described by ε·II,max=2ε·BG (1−Sϕs)−1.6, with S=1/0.91 and for
hexagons by ε·II,max=2ε·BG (1−Sϕs)−2.4 with S=1. There are two limits: A minimum
value for ε·II,max/ε

·
BG=2 and maximum fluid fraction ϕ depending on the maximum

packing density ϕs
m at which ε·II,max/ε

·
BG rises to infinity (see text for details).
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particle suspensions under shear should be examined in future using
finite strain experiments that compare the results of numerical
simulations directly to experimentally derived data.

The derived scaling laws from simple model setups can be applied
e.g. to predict the mechanical mode in which two-phase petrological
experiments should be performed, so that the setup can be chosen for
the parameter of interest. Rayleigh–Taylor instabilities, for example,
might have a strong influence on the time scale of percolation and
settling velocities of particles in partially molten systems. Similarly,
Golabek et al. (in press) see in core formation experiments strong
interactions of heavy iron droplets inside a silicate melt, the
wavelength of up- and downwellings of collected iron droplets
could be predicted assuming that the perturbations are related to
Rayleigh–Taylor instabilities.
6. Conclusions

We studied the effect of fluid rheology on two-phase particle
suspensions using direct numerical simulation and we derived
expressions to calculate effective aggregate viscosities for Newtonian
and non-Newtonian rheology. Our results show that the rheology of
the fluid phase governs the effective aggregate rheology of the two-
phase assemblage, i.e. particle suspensions only behave non-New-
tonian if the fluid phase has non-linear rheology, irrespective of the
rheology of the solid phase. Locally enhanced strain rates inside
particle suspension might cause the change from Newtonian to non-
Newtonian rheology at higher particle fractions.

We parameterized typical flow patterns and derived an analytical
solution for the change from Rayleigh–Taylor instability (strongly
interacting particles, homogenization of two-phase layer) to Stokes
suspension (independently sinking particles) mode. The transition
generally occurs at high fluid fractions (N0.8). Randomly perturbed
two-layer two-phase models of Newtonian as well as non-Newtonian
rheology develop Rayleigh–Taylor instabilities with dominant wave-
length according to the aggregate viscosity and density.

Further investigation for direct comparison between experimen-
tal and numerical studies of partially molten systems is required.
Finite strain experiments with more sophisticated models would
give insights into the relative importance of shear heating, non-
Newtonian melt rheologies, elasticity on the effective rheology of the
assemblage.
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Appendix A. Equation for non-Newtonian
rheology — effective viscosity

The equation for the strength in case of power law creep in the
lithosphere is generally described by (Ranalli, 1995, 1997):

σ =
ε̇
A

� �1=n
exp

E
nRT

� �
ð27Þ

where σ is the principal stress difference, ε· the strain rate, T the
absolute temperature, R the universal gas constant, n the power law
coefficient and A and E are creep parameters of the material. Our
numerical simulations are isothermal experiments, therefore we
reduce the equation to the general form (Ranalli, 1995, Chp. 4.4)

σ̃ ij = Cε̇ð1 = n−1Þ
II ε̇ij; ð28Þ

where σ̃ij is the deviatoric stress tensor, ε·II the second invariant of the
strain rate tensor, ε·ij the strain rate tensor and C is, in general, a
function of pressure, temperature and material parameters and is
according to Eq. (27)

C =
1
A

� �ð1=n−1Þ
exp

E
nRT

� �
: ð29Þ

Eq. (28) is expanded by a characteristic strain rate ε̇0 which results in

σ̃ ij = C
ε̇II
ε̇0

� �ð1=n−1Þ
ε̇ð1 = n−1Þ
0 ε̇ij: ð30Þ

The deviatoric stress (σ̃ij) for a viscous material is given by
(Eq. (3))

σ̃ ij = 2μeff ε̇ij: ð31Þ

Combining Eqs. (30) and (31) results for the effective viscosity in

μeff = C
1
2

� �
ε̇II
ε̇0

� �ð1=n−1Þ
ε̇ð1 = n−1Þ
0 : ð32Þ

The power law effective viscosity is given by the following general
form

μeff = M
ε̇II
ε̇0

� �ð1=n−1Þ
; ð33Þ

where in case of Newtonian rheology, n=1, we get M=μ0, the
characteristic viscosity of the material. M is a material parameter and
has for nN1 the units Pa×s1/n. Since M has only a known value for
n=1, we use for nN1 the characteristic viscosity μ0 and a

http://dx.doi.org/10.1029/2009GC002552


Fig. 10. (a) Growth rate curves for different fluid fractions. Each curve represents
calculations with fixed parameters (fluid fraction, viscosity, density and height of
interface) but changing wavelengths by changing the size of the width W (Fig. 4).
(b) Aggregate viscosity versus fluid fraction in double-logarithmic scales derived using
(1) the analytical solution of Rayleigh–Taylor instabilities and (2) the stress–strain rate
relationship (Eq. (7)) as described in Section 3.
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characteristic strain rate ε̇0, which leads to the following form (used
for numerical implementation Eq. (6)) with correct dimensions

μeff = μ0
ε̇II
ε̇0

� �ð1=n−1Þ
: ð34Þ

From Eqs. (32) and (34) follows that

μ0 = C
1
2

� �
ε̇ð1 = n−1Þ
0 ; ð35Þ

which shows the relationship of the characteristic viscosity μ0, the
characteristic strain rate ε̇0 and the material parameter C.

Appendix B. Viscosity derivation in different flow fields

B.1. Viscosity derivation using Rayleigh–Taylor instabilities

The analytical solution for RT instabilities (Biot and Odé, 1965;
Whitehead, 1988) is used to derive the aggregate viscosity of the top
layer of the two-layermodel (Fig. 4). The growth rate of the instability is
a function of viscosity, density, gravity, wavelength and height of
interface of two homogeneous layers. To compare the growth rate
curves of the analytical solutionwith the numerical solution the growth
rate for the two-layermodelwas calculated for differentbox sizes, i.e. for
different wavelengths but with constant parameters for the two phases
(fluid and grains) as well as constant fluid fraction. Fig. 10a shows the
growth rate curves as a function of wavelengths normalized by the
height of the box H for different fluid fractions. Due to the fact that all
physical parameters of the lower (pure fluid) and top (fluid–grain
mixture) layer are knownexcept the aggregate viscosity of the top layer,
assuming that the aggregate density is an arithmetic average of the
densities of each phase fraction, the aggregate viscosity of the top layer
can then be found by manually fitting the analytical solution.

The aggregate viscosities are evaluated using the RT instability
fitting method for different grain shapes (Fig. 10b). The viscosities
derived by the RT instability fitting method are typically higher than
the directly derived viscosities using the stress–strain rate relation-
ship (Eq. (7)). The values are not systematically higher, e.g. for
squares both methods are in agreement while for spheres the misfit is
almost a factor 2. The higher values for the RT instability fitted
viscosities are not fully understood. This discrepancy might be due to
the fact that RT instabilities produce a more general strain rate field
composed of pure and simple shear components, rather than a purely
pure shear flow field in the pure shear case. Additionally, inaccuracies
in measuring the growing velocity at the interface may have an
influence on the results as well. Testing different velocity evaluation
schemes, however, showed that this did not affect the results.

B.2. Anisotropy effects for square shaped particles

We performed additional simulations in order to test a possible
effect of anisotropy of different particle shapes. In these simulations,
we applied either pure shear (as in the simulations discussed in
Section 3.1.1) or simple shear boundary conditions to a horizontally
pronounced setup (squares horizontally shifted against each other)
using square shaped grains and calculated the directly derived
aggregate viscosities (Eq. (11)). For the simple shear case a significant
decrease of the aggregate viscosity of approximately factor two can be
observed. Simulations with either horizontally or vertically (squares
vertically shifted against each other) pronounced setups were
performed to calculate the aggregate viscosities using the RT fitting
method (Appendix B.1). In this case the difference between the two
setups is negligibly small. Applying simple shear or pure shear
deformation to hexagonal or spherical shaped grains does not have a
noticeable influence on the aggregate viscosities.
This generally indicates that shapes that have a low sphericity tend
to influence the aggregate viscosity by an effective mechanical aniso-
tropy in the two-phase particle suspension. In a more general flow
field (combination of pure and simple shear) as it is produced in a RT
instability field this effect is likely to disappear.

Appendix C. 1D model: dependence of the effective aggregate
viscosity on fluid fraction in case of non-Newtonian rheology

We obtained insight in the governing parameters of a two-phase
particle suspension using non-Newtonian rheology (Section 3.1.2).
Due to complexity of the resulting equation (Eq. (12)) we study a 1D
model to gain more information, specifically, the dependence of the
effective viscosity on the fluid fraction ϕ. We consider a thin bar of
length L that is composed of a fraction of fluid and grain with different
constant viscosities (μf and μs) separated by an interface. The system
is subjected to constant strain rate (ε̇BG) boundary conditions.

The general derivation of the 1D set of equation is given in details
in Deubelbeiss and Kaus (2008). For the given setup we can assume
that the stress inside the system is constant.

σxx = 4μ
∂vx
∂x ; ð36Þ
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σxx is the stress in x direction, vx the velocity in x direction and μ the
viscosity inside the system. According to the derived Eq. (18) in
Deubelbeiss and Kaus (2008) we can rewrite Eq. (36) as

σxx =
4μfμs

ðμf ð1−ϕÞ + μsϕÞ
ε̇BG; ð37Þ

ε̇BG =
Δvx
L

; ð38Þ

where εḂG is the applied background strain rate, Δvx is the velocity
difference at the left and right boundary, L the length of the domain, μf
and μs are the fluid and the grain (solid) viscosity, respectively. For the
special case where the interface is in the center at x=a=0 (ϕ=0.5)
then Eq. (37) becomes

σxx =
8μfμs

ðμf + μsÞ
ε̇BG: ð39Þ

Assuming a non-Newtonian rheology for the fluid (grain rheology
remains Newtonian) we substitute in Eq. (37) μ eff

f by

μ f
eff = μ0

ε̇ f
xx

ε̇0

 !ð1=n−1Þ
ð40Þ

where μ0 is a characteristic viscosity (see Section 2, Appendix A) and
ε·xxf the strain rate inside the fluid. The strain rate of the fluid ε·xx is
according to Eq. (36) and substituting Eqs. (37) and (40)

ε̇fxx =
μ s

μ0
ε̇fxx
ε̇0

� �ð1=n−1Þ
ð1−ϕÞ + μsϕ

ε̇BG: ð41Þ

The equation is rather difficult to solve for an arbitraryn. FornN4 the
solution can only be derived numerically. Therefore we exemplarily
show the solution for the case n=2. In this case there are 3 possible
solutions, where only one is realistic for our case

ε̇fxx =
1

2μ2
s

4μ2
s ε̇BG + μ2

0 + μ2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8μ2

2 ε̇BG + μ2
0

μ2
0

s0
@

1
A: ð42Þ

By knowing ε·xxf we can calculate the effective fluid viscosity μ eff
f

(Eq. (40)). Thus, the effective aggregate viscosity of the whole system
μ eff
agg (derivation of μ eff

agg see Deubelbeiss and Kaus (2008)) as well as
the background aggregate viscosity μBG

agg is

μagg
eff =

μ f
effμ s

μ f
eff ð1−ϕÞ + μ sϕ

; ð43Þ

μagg
BG =

μBGμ s

μBGð1−ϕÞ + μ sϕ
; ð44Þ

where μBG is derived using Eq. (40) and substituting ε·BG instead of
using ε·xxf . The ratio between effective aggregate viscosity μ eff

agg and
background aggregate viscosity μBGagg indicates how much smaller the
effective aggregate viscosity inside a two-phase 1D system is. This, in
turns, results in a higher strain rate of the aggregate ε·eff

agg (according to
Eq. (36)). The ratio is dependent on fluid fraction ϕ and the power law
coefficient n in the following way

μagg
eff

μagg
BG

= ðϕÞð1=n−1Þ
: ð45Þ
Thus, the dependence on the fluid fraction ϕ and its exponent
(1/n−1) results from the higher strain rates occurring inside the
aggregate compared to the applied background strain rate. The
relation of the additional exponent of 1.8 for spheres or 2.8 for
hexagons remains to be explained. However it seems that it is
strongly related to the shape of the particles as described in
Section 3.1.1. Similarly, the ratio ε̇effagg/ε̇BG will be higher than 1.
With this fact, we can additionally explain the dependence of the
maximum occurring strain rate on fluid fraction and the background
strain rate inside a two-phase system as shown in Section 5.1.
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