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Rocky planets and satellites form through impact and accretion processes that often involve silicate fluids 
at extreme temperatures. First-principles molecular dynamics (FPMD) simulations have been used to 
investigate the bulk thermodynamic properties of SiO2 fluid at high temperatures (4000–6000 K) and low 
densities (500–2240 kg m−3), conditions which are relevant to protoplanetary disc condensation. Liquid 
SiO2 is highly networked at the upper end of this density range, but depolymerises with increasing 
temperature and volume, in a process characterised by the formation of oxygen–oxygen (O=O) pairs. The 
onset of vaporisation is closely associated with the depolymerisation process, and is likely to be non-
stoichiometric at high temperature, initiated via the exsolution of O2 molecules to leave a Si-enriched 
fluid. By 6000 K the simulated fluid is supercritical. A large anomaly in the constant-volume heat capacity 
occurs near the critical temperature. We present tabulated thermodynamic properties for silica fluid that 
reconcile observations from FPMD simulations with current knowledge of the SiO2 melting curve and 
experimental Hugoniot curves.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

Silica is the building block of the silicate minerals, and thus an 
Earth-forming material of fundamental importance. The Earth Sci-
ences are usually concerned with silicates in the solid state, or the 
liquid state not far above the melting point, where the liquid den-
sity is similar to that of the solid. However, the formation of rocky 
exoplanets and satellites involves high-entropy proto-planetary or 
post-impact debris discs. To model silicate fluid in such a disc at 
high temperatures and low densities, it is necessary to estimate 
the critical point of the fluid, since it is only below the critical tem-
perature that physical partitioning of vapour and liquid reservoirs 
can occur on cooling, with associated chemical fractionation (e.g. 
Pahlevan et al., 2011). For silica, often treated as a simple analogue 
for silicate systems, the critical point in temperature–density space 
is thought to be in the vicinity of 5000–6000 K, 500–700 kg m−3

(summarised in Connolly, 2016).
Under the high-temperature, low-density conditions of the pre-

dicted critical point, the properties of silica fluid are difficult to 
probe experimentally. By contrast, there is abundant experimen-
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tal information in other parts of the stable fluid field. At 1 bar, 
both the melting point and boiling point are known, the latter 
with the aid of thermodynamic analysis (e.g. Kraus et al., 2012; 
Schick, 1960; Schnurre et al., 2004). Calorimetric and volumet-
ric properties have been constrained (e.g. Lange and Carmichael, 
1987; Stebbins et al., 1984), although, due to the exceptional vis-
cosity of SiO2 liquid, these values are usually extrapolated from 
measurements in multicomponent systems. The melting curve is 
known experimentally to P ≤ 120 kbar, as summarised in the 
thermodynamic analysis of Holland and Powell (2011, see Sup-
plementary Materials). Shock wave experiments have been used 
to trace SiO2 Hugoniot curves into regions of temperature–density 
space accessible by giant impacts. Starting from, typically, α-quartz 
(2650 kg m−3) or fused silica (2200 kg m−3), such experiments 
have explored trajectories of 5 ×103–1 ×105 K, 4500–8000 kg m−3, 
and 5 × 102–2 × 104 kbar (e.g. Hicks et al., 2005; Kraus et al., 
2012; McCoy et al., 2016b). Along these trajectories, at tempera-
tures in excess of 3 ×104 K, the fluid becomes a conductive plasma 
(Hicks et al., 2006). In recent years, the shock wave approach has 
been adapted for high-temperature, low-density conditions; using 
silica aerogel as a starting material, Knudson and Lemke (2013)
and Falk et al. (2014) obtained shocked materials with densities 
of ∼1100 kg m−3, at 1 × 104–8 × 104 K and 300–2000 kbar. How-
ever, only the study of Kraus et al. (2012) directly investigated the 
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products of post-shock decompression in the vicinity of the liquid–
vapour critical point. Their work entailed complex measurements 
of density and models of entropy, based on the assumption that 
the post-shock material decompressed isentropically.

Molecular dynamics methods offer a valuable supplement to 
experiments, especially under experimentally challenging condi-
tions. First-principles molecular dynamics (FPMD) under density 
functional theory (DFT) have been used to extend the experimen-
tal SiO2 melting curve to conditions in excess of 5.5 × 104 kbar, 
2 × 104 K (González-Cataldo et al., 2016; Usui and Tsuchiya, 2010). 
Qi et al. (2015) used FPMD to simulate the Hugoniot for silica with 
starting densities of up to 2940 kg m−3. The studies of Karki et al. 
(2007), Kim et al. (2012), Sarnthein et al. (1995) and Trave et al. 
(2002) allow thermodynamic, structural and transport properties 
to be assessed for SiO2 liquid over a temperature–density grid, at 
300–6000 K and above 2100 kg m−3, similar to the density at the 
1 bar melting point. At lower densities but much higher temper-
atures (1000–1200 kg m−3, 1 × 104–8 × 104 K), Falk et al. (2014)
complemented their shock experiments with low-density DFT sim-
ulations, deep in the supercritical fluid field, while Karki et al. 
(2013) explored the viscosity of zero-pressure SiO2 fluid at densi-
ties of 780–2180 kg m−3. A further large body of work investigates 
liquid and glassy silica via empirical-potential molecular dynamics 
(EPMD). Horbach and Kob (1999), Lascaris et al. (2014) and Saika-
Voivod et al. (2000) applied the pairwise potentials of van Beest 
et al. (1990) and Woodcock et al. (1976) to liquids with density 
of 2000 kg m−3 and above. Kieffer and Angell (1988) simulated 
aerogel-like amorphous silica, subject to isotropic tensile stress, 
with bulk densities of 100–1600 kg m−3 along a 300 K isotherm. 
EPMD allows larger sample sizes and longer simulation times than 
FPMD, and has suggested a number of insights, for example with 
respect to strong versus fragile behaviour of the silica liquid and 
its relation to thermodynamic properties (Angell and Hemmati, 
2013). However, the computationally inexpensive pairwise poten-
tials are associated with substantial errors in the absolute tem-
peratures of phase phenomena (∼1000 K, e.g. Saika-Voivod et al., 
2004).

There is a shortage of constraints on silica fluid at densities 
of 0–2000 kg m−3, temperatures of 0–104 K and pressures of 
0–5 kbar, the region thought to contain the critical point (e.g. 
Melosh, 2007). Notwithstanding, the importance of silica is such 
that numerous equations of state, encompassing the critical region, 
have been proposed for its solid and its fluid states. The hydrocode 
of Melosh for SiO2 (Melosh, 2007) is a long-range thermodynamic 
equation of state (EoS), encompassing fluid and solid states, and is 
therefore suitable for impact modelling involving terrestrial plane-
tary bodies. An equation of state for Mg–Si–O liquid in the Earth’s 
mantle was presented by de Koker and Stixrude (2009), but has yet 
to be extrapolated to conditions of lower fluid density. Iosilevskiy 
et al. (2014) presented a range of preliminary EoS for SiO2, and ac-
knowledged the possibility that boiling is significantly incongruent 
at critical conditions, though at 1 bar it is essentially congruent 
(Schick, 1960). Connolly (2016) developed a van der Waal’s style 
molecular EoS for Si–O fluids that explicitly allows for speciation 
and predicts slightly incongruent boiling of a bulk SiO2 system. 
There is substantial overlap in the predictions of critical conditions 
derived from these models. However, apart from the analysis by 
Kraus et al. (2012) of post-decompression materials there are no 
independent constraints on the critical conditions, nor on the im-
plied nature of the near-critical fluid.

The present study aims to clarify the nature of SiO2 liquid at 
densities of 500–2240 kg m−3 and temperatures of 4000–6000 K, 
and gain insight into near-critical behaviour. The results are anal-
ysed in the context of melting curve and shock wave data. We
illustrate this analysis by retabulating the hydrocode output of 
Melosh (2007) in the stable fluid region.

2. Methods

Simulations were carried out under density functional theory 
using the SIESTA ab initio package (Soler et al., 2002). The gen-
eralised gradient approximation (GGA; Perdew et al., 1996) was 
used to account for the energy of exchange and correlation among 
the electrons. Simulations took place in the microcanonical (NVE) 
ensemble, at densities of 499–2237 kg m−3, and nominal tem-
peratures of 4000–6000 K. True ensemble average temperatures 
are given in Table S1 of the Supplementary Materials. The cu-
bic simulation box contained 24 SiO2 units (72 atoms), repeated 
periodically. At lower, near-critical densities, the small systems ac-
cessible in DFT are unable to undergo phase separation, due to the 
dominance of the free energy penalty associated with interfaces. 
Nevertheless, in the DFT system of this study, trends in bulk prop-
erties distinguish stable one-phase regions from regions of inhib-
ited phase separation. Section S1 of the Supplementary Materials 
discusses the methodology in full.

3. Direct observations of critical behaviour from 
pressure–volume isotherms

Bulk properties obtained in production runs are presented in 
Table S1, along with the properties of three low-density simula-
tions at 4000 K that were annealed with no true production runs 
(Supplementary Materials section S1). The results are shown in 
pressure–volume (P –V ) space (Fig. 1a), with isotherms sketched 
at 4000, 5000 and 6000 K. At volumes beyond the range of the 
simulations, 6000 K isotherms are shown for hypothetical ideal 
silica vapours consisting of SiO2 and SiO + ½ O2. This allows the 
simulation results to be compared with the expected geometry of 
isotherms for a fluid in its liquid, gaseous and transitional states 
(Figs. 1b and 1c).

By comparison with the theoretical curves in P –V space, sim-
ulated isotherms appear to describe (i) a liquid region at <80 Å 
per SiO2 unit (1250 kg m−3), with large, negative ∂ P/∂V , (ii) a 
region of much lower-gradient, more vapour-like isotherms at vol-
umes >80 Å, that plausibly represents the two-phase field of 
liquid–vapour coexistence (shown as dashed lines in Fig. 1a), and 
(iii) a supercritical fluid represented by the 6000 K isotherm, along 
which ∂ P/∂V is consistently negative.

The 6000 K isotherm provides an upper limit on the crit-
ical temperature and pressure. Simulations on this isotherm at 
150.0 Å (665 kg m−3) and 200.0 Å (499 kg m−3) showed excep-
tional fluctuations in the partitioning of kinetic and potential en-
ergy, superimposed on the thermal fluctuations, as expected close 
to a critical point. Of the three simulated isotherms, the 5000 K 
isotherm is the most difficult to interpret, given the low resolu-
tion of the simulations in P –V space. It is assumed to be just-
subcritical, on the grounds that it is almost pressure-independent 
at 100–200 Å (1000–4800 kg m−3). The simulation at 5000 K and 
200.0 Å (499 kg m−3) showed large fluctuations as described above 
for 6000 K. The 4000 K isotherm is unambiguously subcritical. 
From low to high volume along this isotherm, the liquid state is 
stable at 44.6 Å (2237 kg m−3), and metastable when it is in ten-
sion at P < 0. A point must exist, between the (4000 K, 44.6 Å) 
coordinate and the intersection of the 4000 K isotherm with P = 0, 
at which the liquid first becomes metastable with respect to a two-
phase liquid–vapour field. Simulations at 4000 K and 99.8–200.0 Å 
did not involve a production run, but suggest an isotherm geom-
etry that is qualitatively consistent with the theoretical isotherm 
of an unstable 1-phase fluid inside the spinodal curve (indicated 
by the red and dashed grey curves in Fig. 1c). Such behaviour 
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Fig. 1. (a) Pressure versus volume obtained in simulations using GGA. Simulations without production runs are shown as white circles. Isotherms are sketched at 4000 K 
(blue), 5000 K (orange) and 6000 K (green), and interpreted based on their geometries. Dotted curves indicate metastable or unstable (inter-spinodal) isotherms, where 
phase separation would take place in a system of infinite extent. Dashed curves are ambiguous due to the limited resolution of the pressure–volume grid defined by the 
simulations. To show the contrast between liquid-state and vapour-state isotherms, ideal gas isotherms are also calculated at 6000 K for two possible sets of species yielding 
a bulk SiO2 composition. Panels (b) and (c) are calculations using the van der Waal’s EoS, for qualitative comparison with the simulation results. Panel (b) shows how the 
volume of coexisting liquid and vapour at a given pressure can be found using an equal-area construction. Panel (c) shows the geometric relationship between the tielines of 
liquid–vapour coexistence, the coexistence curve representing the edge of the ‘vapour dome’, and the spinodal curve. (This and following figures are shown in colour in the 
web version of this article.)
arises because the atomic system is some orders of magnitude too 
small to undergo genuine liquid–vapour phase separation. The sim-
ulations constrain the position of the critical point to the region 
5000–6000 K, 100–200 Å (500–1000 kg m−3) and 2–5 kbar.

The pressures of isotherms at 2237 kg m−3 (Fig. 1a) agree to 
within 30% with those reported by Trave et al. (2002) and Karki 
et al. (2007) for liquid of comparable density. The findings are 
also consistent with the lower-density study of Karki et al. (2013), 
which presents simulations along a temperature-density (T –ρ) tra-
jectory between 3000 K, 2180 kg m−3 and 8000 K, 780 kg m−3; 
however, in that work pressure is constrained only to P = 0 ±
10 kbar, so the results of the two studies cannot be compared in 
detail. The pressures of Karki et al. (2007, 2013) were adjusted 
upwards by 15 kbar in an effort to correct for the overbinding 
tendency of the LDA approximation, whereas Trave et al. (2002)
reported uncorrected pressures, which therefore reflect the under-
binding tendency of the GGA approximation. In the absence of 
experimental evidence, the difference between DFT studies gives 
a sense of the systematic uncertainties inherent in FPMD. How-
ever, in the present study, which accesses extremely low densities, 
the uncertainties are likely to be a strong function of volume. The 
weak bonding associated with GGA grows less significant as the 
liquid becomes more compressible (− (∂ P/∂V )T decreases). Our 
simulation using LDA, at 1400 kg m−3 (71.3 Å), 6000 K (nominal) 
and −0.1 kbar, is 12 kbar below our equivalent GGA run, smaller 
than the +15 kbar correction adopted by Karki et al. (2007) for 
LDA. The LDA run also highlights the uncertainties in the critical 
conditions as estimated from the simulations. The 6000 K isotherm 
appears to be supercritical in the GGA simulations, but reaches 
P = 0 in the LDA simulations. The critical temperature Tcrit in the 
LDA bulk system must be higher than in the GGA system, while 
Pcrit and ρcrit might be somewhat lower. Based on this discussion 
and our interpretation of the isotherm geometry (Fig. 1), it appears 
that uncertainties on the critical conditions due to the limit of res-
olution in the simulations are of the order of 1 kbar and some 
hundreds of kelvin, while uncertainty in the exchange-correlational 
functional might double these values.

4. Structural properties

Near its ambient-pressure melting point, silica fluid is well 
known to be a polymerised liquid, its nanostructure dominated 
by the corner-sharing tetrahedral [SiO4]2− units familiar from 
the crystalline polymorphs. The simulated liquid in run 2237_40 
(2237 kg m−3 or 44.6 Å, 4000 K; Table S1) meets this description, 
in agreement with the simulations of Karki et al. (2007). Radial 
distribution functions, g(r), for the 2237_40 simulation show a 
pronounced peak in g(r)Si–O, representing Si–O nearest neighbours, 
at a characteristic bond length of 1.62 Å (Fig. 2a). This peak is 
followed by peaks in g(r)O–O and g(r)Si–Si, after which g(r)O–O

and g(r)Si–Si continue approximately in anti-phase with g(r)Si–O. 
The predominance of [SiO4]2− tetrahedra is expressed in the four-
fold coordination of Si by O and twofold coordination of O by Si 
(Fig. 3a).

As the temperature rises, the three-dimensional network per-
sists in the 2237 kg m−3 liquid, but becomes increasingly disor-
dered. The higher-temperature network (Fig. 3b–c) is characterised 
by smaller rings, while a decreasing proportion of oxygens occupy 
pure bridging positions between two nearest-neighbour Si atoms 
(a Si–O–Si structure). Some of the former bridging oxygens join Si–
Si–O–Si groups, reflect the increasing tendency for Si–O–Si bridges 
to break and reform within the network. In the radial distribution 
functions (Fig. 2), the first minimum in g(r)Si–O rises to well above 
zero. This indicates an increasingly dynamic structure, in which 
O atoms spend a significant proportion of their time in the pro-
cess of swapping between Si neighbours. Short-range order breaks 
down beyond the second g(r)Si–O peak. At 6000 K, the short-radius 
g(r)O–O function becomes smeared out in advance of the first main 
peak, such that for a small fraction of the time, the liquid con-
tains O–O neighbours lying closer together than Si–O neighbours. 
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Fig. 2. Radial distribution functions (RDFs; g(r)) for a representative set of simulations. RDFs are shown for Si–O (black), Si–Si (blue) and O–O (red), in simulations with 
densities of 2237, 1800, 1000 and 665 kg m−3 (44.6, 55.4, 99.8 and 150.0 Å), at nominal temperatures of 4000, 5000 and 6000 K. At 2237 and 1800 kg m−3, the g(r) are 
calculated out to a radius of r = √

2L/2, where L is the length of the simulation box. At 1000 and 665 kg m−3 the g(r) are truncated at r = 8 Å, since at larger radii they are 
featureless for the highly disordered liquid. The ‘O=O peak’ in g(r)O–O is a distinctive feature of higher-temperature, lower-density simulations. It appears at a shorter radius 
than the dominant first Si–O peak, at a distance characteristic of the oxygen–oxygen double bond. Note the varying scales of the g(r) axes. Calculated with the R.I.N.G.S. code 
of Le Roux and Jund (2010).
Nevertheless, each Si is still effectively coordinated to four nearest-
neighbour oxygens (Fig. 3a).

As volume increases, the liquid network begins to disintegrate, 
developing voids (Kieffer and Angell, 1988) before being tugged 
into clusters. Disintegration of the network as a function of vol-
ume can be distinguished from the process of network disorder-
ing that occurs with rising temperature. Network disintegration 
is represented by a decrease in Si–O coordination number, which 
falls below 4, the value representing pervasive [SiO4]2− configura-
tions, between 1600 and 1400 kg m−3 (62.3–71.3 Å; Fig. 3a). Si–O 
and O–Si coordination numbers obtained in this study are con-
sistent with the mean values reported by Karki et al. (2013) at 
6000 K. Ultimately in the present study, Si–O coordination falls to 
2.3 and O–Si coordination to 1.3, consistent with the prediction 
of Connolly (2016) that SiO2-like molecules are the predominant 
Si-bearing species in a near-critical vapour. As the coordination 
numbers fall there is a corresponding decrease in characteristic 
ring size, and in the proportion of oxygens involved in Si–O–Si 
bridges (Fig. 3b–c). Radial distribution functions for low-density, 
high-temperature simulations show that there is essentially no 
short-range order beyond the initial Si–Si peaks (Fig. 2). A kink in 
g(r)Si–Si at ∼2.8 Å becomes increasingly prominent, probably re-
flecting the rising numbers of Si that exist on the edge of clusters 
and are no longer influenced symmetrically by neighbouring Si in 
a network. Bond and dihedral angles are discussed in Supplemen-
tary Materials.

A key feature of the simulated fluid is the formation of double-
bonded oxygen pairs (O=O or O2 in subsequent discussion) at 
higher volumes and temperatures. The first sign of this phe-
nomenon is the smearing-out of the short-radius g(r)O–O func-
tion in the 6000 K, 2237 kg m−3 liquid (Fig. 2), discussed above. 
In lower-density simulations at 5000–6000 K, a distinct peak in 
g(r)O–O develops at a radius of 1.28 Å, characteristic of the O=O 
bond. The formation of such O=O pairs is symptomatic of network 
breakdown, leaving the pool of potentially network-forming atoms 
enriched in Si. At 6000 K and 665 kg m−3 (150 Å), 15% of oxygens 
in the simulation are involved in O=O pairs, such that the “bulk 
composition” of the remaining atoms is XO = O/(Si + O) = 0.63
(Fig. 3d).

The formation of O=O pairs supports the suggestion of
Iosilevskiy et al. (2014) and Connolly (2016) that by ∼1 kbar SiO2
liquid may boil incongruently. In the case of incongruent boil-
ing, isobaric boiling at the SiO2 bulk composition takes place 
over a temperature interval, initiating with an O2-rich vapour 
equilibrating with a Si-enriched liquid, with the vapour evolv-
ing up-temperature towards the system bulk composition and the 
liquid evolving towards a negative azeotrope on the Si-rich side 
of the SiO2 bulk composition. Thus the bulk SiO2 system of the 
simulations lies, from the perspective of a phase equilibrium in-
terpretation, in the binary Si–O2 system. The true critical point 
of the binary system occurs at the negative azeotrope, while the 
values Tcrit and Pcrit of the bulk SiO2 system, referred to above, 
strictly represent a max condentherm and max condenbar (Con-
nolly, 2016). At 0.001 kbar, by contrast, it has been assumed in 
thermodynamic analysis (e.g. Schnurre et al., 2004) that boiling 
does not deviate significantly from congruence.

5. Thermodynamic bulk properties and response functions

Thermodynamic bulk properties derived from the simulations 
are usefully considered within a wider survey of the silica fluid 
field. The analysis below neglects the likelihood of slightly incon-
gruent boiling at near-critical conditions, since the thermodynamic 
consequences are likely small, and could not be inferred from the 
available data. It treats the hydrocode equation of state of Melosh 
(2007), termed the M-ANEOS, as representing the current under-
standing of SiO2 thermodynamic properties from a planetary mod-
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Fig. 3. Structural features of the simulated silica fluid, as a function of volume (also shown as density, ρ) and nominal temperature (4000 K: squares, solid curves; 5000 K: 
hexagons, dashed curves; 6000 K: diamonds, dotted curves). (a) Coordination numbers (O–O: red; Si–Si: blue; Si–O: black; O–Si: yellow), calculated with the R.I.N.G.S. code 
of Le Roux and Jund (2010). Because the coordination number X–Y was calculated by integrating the number of Y atoms under the first peak in the X–Y radial distribution 
function, the O–O coordination number plunges after the appearance of the ‘O=O peak’. (b)–(c) Characteristic network topology and defects. Panel (b) shows modal (yellow) 
and maximum (red) ring size neglecting 3-rings, calculated with the Travis code (Brehm and Kirchner, 2011). (c) Modal proportions of O atoms occupying specific 1-oxygen 
local environments. Oxygens in Si–O–Si configuration (blue) form bridges between exactly two neighbouring Si atoms, while oxygens in Si–Si–O–Si environments (black) 
broadly provide a bridging function, but with three Si nearest neighbours in a transient configuration. The cutoff for determining nearest neighbours is the first minimum 
in the g(r)Si–O or g(r)O–O curve, discounting any initial O=O peak. (d) Average composition of the simulated fluid, excluding O=O pairs. The composition is expressed as 
XO = O

Si+O for the fluid with O=O excluded, such that XO = 2
3 for SiO2 liquid with no O=O pairs present. Simulation conditions are represented by red dots (completed 

simulations) or orange dots (no production run).
elling perspective. Key properties are examined in temperature–
density (T –ρ) space.

Pressure, P , has been explored across an extensive region of 
T –ρ space, as shown in Fig. 4a. The new simulations comple-
ment experimental and FPMD studies of the melting curve and 
various Hugoniot curves. In the data compilation shown, P –T co-
ordinates and liquid and solid densities along the melting curve 
for P ≤ 120 kbar were taken from the thermodynamic analysis of 
Holland and Powell (2011). The underlying experimental data are 
listed in the Supplementary Materials. Melting curve data at higher 
pressures were inferred from the FPMD simulations of González-
Cataldo et al. (2016) and Usui and Tsuchiya (2010). The illustrated 
Hugoniot curves are compiled from the work of Falk et al. (2014)
and Knudson and Lemke (2013) on silica aerogel, the simulations 
and experiments of McCoy et al. (2016b) and Qi et al. (2015) on 
fused silica, and the simulations of Qi et al. (2015) on “dense 
quartz” of super-ambient density (2940 kg m−3). The FPMD study 
of Karki et al. (2007) straddles the melting curve, and overlaps in 
T –ρ space with this work.

The M-ANEOS pressure surface, shown in Fig. 4a, pre-dates 
much of the available data. Nevertheless it represents them well, 
though it tends to underestimate (∂ P/∂T )ρ by comparison with 
the Hugoniot curves for fused and super-ambient density quartz, 
and overestimate (∂ P/∂ρ)T by comparison with the melting curve. 
The version of the M-ANEOS shown in the figure is the tabula-
tion provided by Sarah Stewart (personal communication). Fig. 4b 
shows the same data, overlain by a retabulated surface that 
matches the data somewhat better. The surface was simply extrap-
olated into the stability field of crystalline phases. Fig. 4c is a detail 
of 4b, focusing on the low-T , low-ρ portion in which the new sim-
ulations of this work outline the liquid–vapour critical region. After 
fitting a function to the T –ρ–P data, including the metastable and 
unstable simulation data, the domain of liquid–vapour coexistence 
was established from equal-area calculations.

The most striking deviation of observations from the M-ANEOS 
surface is found in the isochoric heat capacity, cV , given by 
(∂U/∂T )V . Most of the data in Fig. 5 are taken from the FPMD 
simulations by Karki et al. (2007) and the present work. To the 
FPMD data has been added a representative value of cV , which we 
constructed based on unpublished data provided by F. González-
Cataldo (personal communication), obtained during the study pre-
sented in González-Cataldo et al. (2016). Independent support for 
the FPMD data comes from the shock-wave experiments of Hicks 
et al. (2006). Values of cV along the melting curve to 3000 K are 
also shown in Fig. 5, taken from the thermodynamic analysis of 
Holland and Powell (2011).

The magnitude of the cV in the FPMD simulations is consid-
erably higher than the values of Holland and Powell (2011) on 
the low-temperature melting curve, or the M-ANEOS predictions 
(Fig. 5a), for which cV does not greatly exceed 3 (in dimension-
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Fig. 4. Constraints on the pressure of SiO2 fluid in temperature–density space, compared with tabulated pressure surfaces from Melosh (2007) (a) and this work (b, c). Panel 
(a), the M-ANEOS pressure surface, also locates the melting curve and experimental Hugoniot curves along which data were obtained. Data on the aerogel Hugoniot are from 
Knudson and Lemke (2013) and Falk et al. (2014); on the fused silica Hugoniot from Qi et al. (2015) and McCoy et al. (2016b); on dense quartz from Qi et al. (2015); and 
on the melting curve from Usui and Tsuchiya (2010), González-Cataldo et al. (2016) and Holland and Powell (2011). “Fluid MD” data are from Karki et al. (2007) and this 
work, as shown in (c). Panel (c) shows a detail of (b) in which the liquid–vapour coexistence region can be seen. Panel (d) plots the pressure data against values from the 
new pressure surface presented in this work; the 1:1 line is shown in red.
less, per-particle form) anywhere in the fluid region investigated. 
The M-ANEOS takes as its base value the Dulong–Petit limit of 
cV = 3, the sum of kinetic and potential energy contributions of 
a harmonic oscillator that successfully approximates cV in many 
crystalline solids. It then allows for an additional term account-
ing for speciation. However, Hicks et al. (2006) discovered a peak 
of cV ∼5 for silica liquid in the range 6000–35,000 K, reflect-
ing strongly temperature-dependent depolymerisation. During this 
process, large cV values are associated with a great increase in the 
number of ways of distributing energy over a variety of topologi-
cal structures that are very similar in energy. A large anharmonic 
component of vibration is also present, that allows local breakup of 
the network as atoms pull apart from their neighbours. The peak 
is followed by a fall in cV as a simpler, essentially molecular struc-
ture is attained (the “bonded liquid” of Hicks et al., 2006), and then 
at still higher temperatures by a further increase in cV as the liq-
uid approaches an atomic fluid. Given that the simulations in the 
present study also show extreme cV values of 4–8 associated with 
depolymerisation, and considering the geometry of the proposed 
cV surface (Figs. 5b–c), we believe that the high simulated heat 
capacities reflect the depolymerisation process.

Kraus et al. (2012) disputed the high heat capacities presented 
by Karki et al. (2007), citing for comparison the measurements 
of Richet et al. (1982) at T ≤ 1837 K and the 3000 K DFT sim-
ulations of Ottonello et al. (2010). Kraus et al. (2012) suggested 
that the simulations of Karki et al. (2007) overestimate the elec-
tronic contribution to the heat capacity, cel

V . In the present study, 
the contribution of the electronic subsystem generally accounts 
for less than 10% of the heat capacity. Moreover, while the elec-
tronic subsystem might plausibly make an excessive contribution 
to the internal energy, U , it is unclear why this would show a 
pronounced temperature dependence under these conditions and 
thereby generate a large heat capacity. Thus, we are not concerned 
that cel

V is excessive. The simulations of Ottonello et al. (2010) were 
on pre-specified molecular clusters rather than an extended body 
of liquid that is able to explore the energy surface, while the mea-
surements of Richet et al. (1982) were well below the temperature 
of depolymerisation. Heat capacities that substantially exceed the 
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Fig. 5. Constraints on the isochoric heat capacity of SiO2 fluid in temperature–density space, compared with tabulated heat capacity surfaces from Melosh (2007) (a) and this 
work (b, c). Panel (a), the M-ANEOS cV surface, locates groups of data obtained along the fused silica Hugoniot by Hicks et al. (2006), and from fluid molecular dynamics 
(“fluid MD”) studies on SiO2 liquid in Karki et al. (2007) and this work. It also shows a representative datum on the melting curve, provided by F. González-Cataldo, personal 
communication. Panel (c) shows a detail of (b) in which the liquid–vapour coexistence region can be seen. “K07 metastable liquid”: data from the simulations of Karki et 
al. (2007) on a liquid at below-solidus conditions. “HP11 data”: values of liquid cV along the solidus in the thermodynamic analysis of Holland and Powell (2011). Panel (d) 
plots the heat capacity data against values from the new cV surface presented in this work; the 1:1 line is shown in red.
Dulong–Petit limit, due to a large anharmonic component of vibra-
tion, are familiar from other Earth materials at ∼6000 K (e.g. Alfè 
et al., 2001).

The retabulation of the M-ANEOS SiO2 fluid properties is de-
scribed in the Supplementary Material. Among the response func-
tions, the Grüneisen parameter, γV , given by (1/ρcV ) (∂ P/∂T ), is 
usually inferred with a large experimental uncertainty, but has re-
cently been determined along the fused silica Hugoniot by McCoy 
et al. (2016a). The retabulated values match the observations well, 
with values lying in the range 0.6–0.8.

6. Boiling curve of silica

Fig. 6 plots the results of simulations from this work in P –T
space, joined by isopycnic (equal-density) contours which intersect 
each other inside the two-phase region. The boiling curve and crit-
ical point were calculated based on the EoS expressions described 
in the previous section. Two dashed curves emanate from the boil-
ing curve, subdividing the supercritical field: the Widom line is 
identified with the line of maximum cP , while the Frenkel line 
marks the complete loss of oscillatory atomic motion, and is dis-
cussed in the following section. The high-temperature part of the 
boiling curve, and the onset of supercriticality, can be understood 
in terms of the depolymerisation, which is observed directly in 
the simulations of this work and inferred along the fused silica 
Hugoniot curve determined by Hicks et al. (2006). At a microstruc-
tural level, the fluid acquires supercritical properties because it is 
starting to undergo wholesale depolymerisation. Given that silica 
boiling at high temperatures is probably an incongruent process, 
the upper part of the “boiling curve” in Fig. 6 should strictly ap-
pear as a field.

Adopting the uncertainties on estimates of critical conditions 
discussed in section 3, there is essential agreement between the 
boiling curve inferred in this work and that of Kraus et al. (2012), 
with the M-ANEOS boiling curve of Melosh (2007) reaching a 
slightly higher critical temperature and lower critical pressure 
(Fig. 6). The experiments of Kraus et al. (2012) potentially con-
strain the boiling with more precision than the simulations, but 
it is difficult to assess the uncertainties in their analysis. Kraus et 
al. (2012) used an entropy-matching method, which requires a de-
tailed knowledge of the entropy surface over a large region of T –ρ
space. Given the apparent complexity of cV between the fused 
silica Hugoniot curve and the ambient pressure liquid–vapour re-
gion, uncertainties in the results of Kraus et al. (2012) may be 
underestimated (see also commentary from Connolly, 2016, on the 
interpretation of post-decompression run products in their study).

7. Dynamic properties

The time-dependent properties of the simulated fluid give ad-
ditional insight into its liquid-like versus vapour-like nature. Such 
properties include the velocity autocorrelation function (vacf, 
Fig. 7a–b), its Fourier transform the vibrational density of states 
(vdos, Fig. 7c–d), and the mean-squared displacement (msd, 
Fig. 8a).
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Fig. 6. Pressure, P versus true temperature, T , attained in simulations. Closed grey 
circles show the conditions of completed simulations, and open circles of simula-
tions with no production run. Isopycnic contours are labelled with density (kg m−3) 
and volume (Å). The isopycnics intersect in the two-phase coexistence region, where 
they are shown as dashed to indicate metastable (outside spinodal curve) or un-
stable (inside spinodal curve) run products. The position of the boiling curve, as 
calculated from the T –ρ–P surface developed in this work, is shown as a dark blue 
line with a representative uncertainty envelope. Positions of the Widom line (line 
of maximum isobaric heat capacity, calculated) and the Frenkel line at which os-
cillatory movement ceases (estimated from analysis of the simulations; see body 
text, section 7) are shown as dashed dark blue lines emanating from the simulated 
boiling curve. The boiling curves of Melosh (2007) and Kraus et al. (2012) are also 
shown.

The vacf is given by Z(t) = 〈�vi(0)· �vi(t)
〉
/ 
〈�vi(0)· �vi(0)

〉
, where 

�vi(t) is the velocity vector of atom i at time t , and vacf at succes-
sive values of t are normalised by the dot product of the first ve-
locity vector in the trajectory with itself. In Fig. 7a–b it is averaged 
over 24 atoms of each element and at least 250 trajectories per 
atom. At lower temperature and high density, epitomised by simu-
lation 2237_40 at 4000 K and 2237 kg m−3, the vacf is character-
istic of a liquid. Along a typical trajectory in this simulation, there 
is an initial phase of rapid decay, lasting 15 fs for Si, after which
vacf oscillates while decaying slowly. This reflects the dominance 
of vibrations among nearest-neighbour atoms on short timescales. 
By ∼300 fs the atomic velocity has become largely decorrelated, 
such that on longer timescales the trajectories become dominated 
by the self-diffusion of atoms. The mass-weighted vdos, given 
by Z̃(ω) = 2m 

∫ ∞
0 Z(t) cos (ωt)dt (Fig. 7c–d), shows a very broad 

segment of the frequency spectrum occupied by periodic motion, 
involving stretching and bending vibrations within various geomet-
rical settings. For simulation 2237_40, the bulk of the vibrational 
frequencies lie in the range 20–850 cm−1 for Si (950 cm−1 for 
O), encompassing vibrational periods of 35–1670 fs. The transition 
from the vibration-dominated to diffusion-dominated timescales 
is clarified in the msd plot (Fig. 8a), where msd is given by 〈
r(t)2

〉 = 1
N �N

i=1

∣∣�ri(t) −�ri(0)
∣∣2

, �ri(t) being the position of the ith 
of the sample of N atoms at time t . In the first 10 fs, motion is 
ballistic with msd proportional to t2

msd, while over timescales 
longer than 500 fs the diffusive transport regime is characterised 
by msd proportional to t . Characteristically for liquid SiO2, there 
is a complex transition between the ballistic and diffusive trans-
port regimes. The transitional timescale includes cage motion, in 
which a tagged particle is temporarily trapped by its neighbours, 
Fig. 7. Velocity-autocorrelation functions (vacf) and their corresponding frequency spectra, the vibrational density of states (vdos), averaged over each production run, as 
implemented in Travis (Brehm and Kirchner, 2011). Upper panels show vacf for (a) Si and (b) O, normalised by the expected value of v(t = 0)2. High temperature and 
low density increase the tendency of the vacf to approach monotonic decay, which would represent loss of oscillatory motion of atoms and locate the Frenkel line. True 
monotonic decay is not attained in the simulations for Si, though it is essentially achieved for O at 6000 K and the minimum densities of 665 kg m−3 and 499 kg m−3. Lower 
panels show the mass-weighted vdos for (c) Si and (d) O, with spectral resolutions of 2–3.5 cm−1.
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Fig. 8. (a) Mean square displacement (MSD) versus time for Si and O atoms at a variety of pressures and densities, shown on a log–log plot. Curves are shown for high 
density (2237 kg m−3 or 44.6 Å, dashed lines) and low density (1000 kg m−3 or 99.8 Å, solid lines), and at nominal temperature of 4000 K (blue), 5000 K (orange) and 
6000 K (green). The curves for oxygen appear in a lighter shade than the equivalent curves for silicon, and are always displaced to slightly higher MSD. (b) Arrhenius plot 
calculated for Si atoms in the diffusive regime. Data taken from Karki et al. (2007) at 2178 kg m−3 is shown as closed circles. Other data are from this study, omitting run 
2237_50 for which the run time was short. Isopycnic data from this work are represented with a symbol for each density as indicated, and isopycnic curves are obtained 
from the empirical relationship log(1/D) = −5.8 − 0.00163ρ + 15.4ρ/T . The effect of pressure differences between the various runs has been neglected. (c) As (b) but for O 
atoms, with data from this study represented using the curves log(1/D) = −5.7 − 0.00161ρ + 14.4ρ/T .
and the still poorly-understood “boson peak” (e.g. Horbach and 
Kob, 1999).

In simulations at high temperature (6000 K) or low density (up 
to 1600 kg m−3), there is a smooth transition between the initial 
ballistic phase of an atomic trajectory and the onset of the diffusive 
transport regime (Fig. 8a). Correspondingly, the vacf shows a near-
monotonic decorrelation of atomic velocities, and the vdos spectra 
tend to a maximum intensity at 0 cm−1 as the dominant wave-
lengths of vibration tend to infinity. This behaviour resembles a 
typical vapour (for which the decay of vacf would be exponential) 
more closely than a typical liquid, although, based on their equi-
librium pressure–volume relations, the simulated systems would 
be best described as liquids or supercritical fluids. In a nanoscopic 
description, the local environment of an atom, as defined by its 
neighbours, evolves over the timescale of its vibration. The bound-
ary beyond which all oscillatory motion between atoms is lost 
is identified as the Frenkel line, and is closely approached by O 
atoms in the 6000 K, 499 kg m−3 (200 Å) simulation. Beyond this 
boundary, cV is expected to decrease as vibrational modes have 
effectively been lost to the fluid. Although the distribution of fluid 
structural features is still well-defined in a statistical sense, a par-
ticular O=O pair, for example, will survive for less than one vibra-
tional period.

Finally we consider the strength versus fragility of the SiO2
liquid. In its [SiO4]2−-dominated structure at ∼2200 kg m−3, sil-
ica is well known to be a strong liquid, in common with other 
tetrahedrally-networked liquids such as GeO2 (Angell and Hem-
mati, 2013). In a strong liquid, properties such as the self-diffusion 
coefficient, D , show a linear Arrhenius relationship. Barrat et al. 
(1997) showed that SiO2 liquid becomes fragile at high pressures 
where the Si–O coordination number exceeds 4, while Horbach 
and Kob (1999) found that strong 2200 kg m−3 silica liquid be-
comes fragile at sufficiently high temperatures. Fig. 8b–c are Arrhe-
nius plots of log (1/D) versus 1/T for Si and O. The self-diffusion 
coefficients D were obtained from the gradient of msd versus 
time in the diffusive transport regime, using the Einstein relation 
D = limx→∞

〈
r(t)2

〉
/6t . Estimates of D are subject to temperature-

dependent finite-size effects (Horbach et al., 1996; Zhang et al., 
2004), introducing a poorly-quantified uncertainty. Given the un-
certainty and the small number of simulation temperatures in this 
study, little can be said about the departure from linearity of the 
Arrhenius plots. However, in Fig. 8b–c, the average gradients of 
log(1/D) v 1/T increase as a function of density, whereas in the 
equivalent figure of Barrat et al. (1997) the opposite trend is seen. 
The maximum gradient at ∼2200 kg m−3 in both studies almost 
certainly reflects the fact that liquid silica ceases to be strong as it 
departs from the density range in which the [SiO4]2−-based net-
work is pervasive.

Angell and Hemmati (2013) suggest that strong behaviour in 
a liquid arises from its thermodynamic properties near an order–
disorder transition. For liquid silica, Angell and Hemmati (2013)
envisage a liquid–liquid transition that terminates at a critical 
point at its low-pressure end, with strong behaviour occurring at 
still lower pressures, in the one-phase region. A silica liquid–liquid 
transition has been sought in EPMD studies (Lascaris et al., 2014, 
and references therein), and is hypothesised to occur at ∼5000 K 
and P > 1 bar. In the present work, no evidence is found for such 
a liquid–liquid transition in the stable liquid field.

8. Discussion and conclusions

New FPMD simulations on low-density silica fluid extend over 
4000–6000 K and 500–2240 kg m−3, a range that incorporates the 
liquid–vapour critical point. The results are broadly consistent with 
previous assessments of the critical point, based on the of shock-
and-release experiments of Kraus et al. (2012) as well as a variety 
of thermodynamic arguments (Connolly, 2016; Iosilevskiy et al., 
2014; Melosh, 2007). Analysis of the simulations demonstrates that 
the onset of supercriticality is intimately associated with breakup 
of the liquid [SiO4]2− network. Below the critical temperature at 
5000–6000 K, the liquid is essentially networked, albeit with an 
increasingly variable network topology and proportion of defects. 
The fluid becomes supercritical once the lattice starts to undergo 
true disintegration to form a molecular liquid, a process heralded 
by the formation of O2 in interstices. The shock-wave study of 
Hicks et al. (2006) records later stages of depolymerisation, in 
which, at T > 3 × 104 K, a liquid with density ∼6000 kg m−3

apparently becomes an atomic fluid. It is likely appropriate to con-
struct a line of maximum isochoric heat capacity in T –ρ space, 
connecting the near-critical region with the heat capacity max-
imum of Hicks et al. (2006). Contrary to the assumptions used 
in some existing equations of state, dimensionless isochoric heat 



20 E.C.R. Green et al. / Earth and Planetary Science Letters 491 (2018) 11–20
capacity probably exceeds 4 per atom across much of the stable 
liquid field.

By combining the results of FPMD and shock-wave studies, it is 
possible to map isochoric heat capacity and pressure over a wide 
expanse of T –ρ space, and thus derive a set of thermodynamic 
properties for fluid of silica-composition fluid. The thermodynamic 
surfaces provided in this work neglect the possibility of O2 exsolu-
tion, that is, incongruent boiling, but otherwise characterise recent 
experimental and molecular dynamic data. They can be used to re-
place the M-ANEOS surfaces of Melosh (2007) for SiO2 fluid field, 
where these are used in planetary modelling. Kraus et al. (2012)
note that an underestimated heat capacity in the M-ANEOS of 
Melosh (2007) leads to an overestimation of temperature along the 
quartz Hugoniot, as too much irreversible work is partitioned to 
temperature relative to entropy. They outline the consequences for 
silicate vaporisation during planetary impact events. However, in 
seeking a simple analogue for silicate liquids, especially of Earth-
or Moon-like composition, the Mg–Si–O system is preferable to the 
pure SiO2 system. This encompasses the likely exsolution of O2
vapour from the liquid at near-critical temperatures, and decay of 
the anomalous properties of SiO2 liquid as network-modifying Mg 
cations are added.

Acknowledgements

We are grateful to Felipe González-Cataldo for sharing his un-
published data with us, and to Oliver Strickson for allowing us to 
use his driver for the SIESTA code. E.C.R. Green thanks the Theory 
Group at CIC nanoGUNE, San Sebastián, Spain, for their hospitality, 
and particularly Fabiano Corsetti for his careful explanations. The 
valuable comments of two anonymous reviewers and the edito-
rial handing of Prof Frédéric Moynier are gratefully acknowledged. 
This work was supported by the Swiss National Science Foundation 
[grant numbers 2-77675-13 and 2-77177-15].

Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .epsl .2018 .03 .015.

References

Alfè, D., Price, G.D., Gillan, M.J., 2001. Thermodynamics of hexagonal-close-packed 
iron under Earth’s core conditions. Phys. Rev. B 64, 045123.

Angell, C.A., Hemmati, M., 2013. Glass transitions and critical points in orientation-
ally disordered crystals and structural glassformers: (“strong” liquids are more 
interesting than we thought). AIP Conf. Proc. 1518, 9–17.

Barrat, J.-L., Badro, J., Gillet, P., 1997. A strong to fragile transition in a model of 
liquid silica. Mol. Simul. 20, 17–25.

Brehm, M., Kirchner, B., 2011. TRAVIS – a free analyzer and visualizer for Monte 
Carlo and molecular dynamics trajectories. J. Chem. Inf. Model. 51, 2007–2023.

Connolly, J.A.D., 2016. Liquid–vapor phase relations in the Si–O system: a calorically 
constrained van der Waals-type model. J. Geophys. Res. 121, 1641–1666.

de Koker, N., Stixrude, L., 2009. Self-consistent thermodynamic description of sili-
cate liquids, with application to shock melting of MgO periclase and MgSiO3

perovskite. Geophys. J. Int. 178, 162–179.
Falk, K., McCoy, C.A., Fryer, C.L., Greeff, C.W., Hungerford, A.L., Montgomery, D.S., 

Schmidt, D.W., Sheppard, D.G., Williams, J.R., Boehly, T.R., Benage, J.F., 2014. 
Temperature measurements of shocked silica aerogel foam. Phys. Rev. E 90, 
033107.

González-Cataldo, F., Davis, S., Gutiérrez, G., 2016. Melting curve of SiO2 at mul-
timegabar pressures: implications for gas giants and super-Earths. Sci. Rep. 6, 
26537.

Hicks, D.G., Boehly, T.R., Celliers, P.M., Eggert, J.H., Vianello, E., Meyerhofer, D.D., 
Collins, G.W., 2005. Shock compression of quartz in the high-pressure fluid 
regime. Phys. Plasmas 12, 082702.

Hicks, D.G., Boehly, T.R., Eggert, J.H., Miller, J.E., Celliers, P.M., Collins, G.W., 2006. 
Dissociation of liquid silica at high pressures and temperatures. Phys. Rev. 
Lett. 97, 025502.

Holland, T.J.B., Powell, R., 2011. An improved and extended internally consistent 
thermodynamic dataset for phases of petrological interest, involving a new 
equation of state for solids. J. Metamorph. Geol. 29, 333–383.
Horbach, J., Kob, W., 1999. Static and dynamic properties of a viscous silica melt. 
Phys. Rev. B 60, 3169–3181.

Horbach, J., Kob, W., Binder, K., Angell, C.A., 1996. Finite size effects in simulations 
of glass dynamics. Phys. Rev. E 54, R5897–R5900.

Iosilevskiy, I., Gryaznov, V., Solovev, A., 2014. Properties of high-temperature phase 
diagram and critical point parameters in silica. High Temp., High Press. 43, 
227–241.

Karki, B.B., Bhattarai, D.B., Stixrude, L., 2007. First-principles simulations of liquid sil-
ica: structural and dynamical behavior at high pressure. Phys. Rev. B 76, 104205.

Karki, B.B., Zhang, J., Stixrude, L., 2013. First principles viscosity and derived models 
for MgO–SiO2 melt system at high temperature. Geophys. Res. Lett. 40, 94–99.

Kieffer, J., Angell, C.A., 1988. Generation of fractal structures by negative pressure 
rupturing of SiO2 glass. J. Non-Cryst. Solids 106, 336–342.

Kim, M., Khoo, K.H., Chelikowsky, J.R., 2012. Simulating liquid and amorphous silicon 
dioxide using real-space pseudopotentials. Phys. Rev. B 86, 054104.

Knudson, M.D., Lemke, R.W., 2013. Shock response of low-density silica aerogel in 
the multi-Mbar regime. J. Appl. Phys. 114, 053510.

Kraus, R.G., Stewart, S.T., Swift, D.C., Bolme, C.A., Smith, R.F., Hamel, S., Hammel, B.D., 
Spaulding, D.K., Hicks, D.G., Eggert, J.H., Collins, G.W., 2012. Shock vaporization 
of silica and the thermodynamics of planetary impact events. J. Geophys. Res., 
Planets 117, E09009.

Lange, R., Carmichael, I., 1987. Densities of Fe2O3 liquids: new measurements and 
derived partial molar properties. Geochim. Cosmochim. Acta 51, 2931–2946.

Lascaris, E., Hemmati, M., Buldyrev, S.V., Stanley, H.E., Austen Angell, C., 2014. Search 
for a liquid–liquid critical point in models of silica. J. Chem. Phys. 140, 224502.

Le Roux, S., Jund, P., 2010. Ring statistics analysis of topological networks: new ap-
proach and application to amorphous GeS2 and SiO2 systems. Compos. Mater. 
Sci. 49, 70–83.

McCoy, C.A., Gregor, M.C., Polsin, D.N., Fratanduono, D.E., Celliers, P.M., Boehly, 
T.R., Meyerhofer, D.D., 2016a. Measurements of the sound velocity of shock-
compressed liquid silica to 1100 GPa. J. Appl. Phys. 120, 235901.

McCoy, C.A., Gregor, M.C., Polsin, D.N., Fratanduono, D.E., Celliers, P.M., Boehly, T.R., 
Meyerhofer, D.D., 2016b. Shock-wave equation-of-state measurements in fused 
silica up to 1600 GPa. J. Appl. Phys. 119, 215901.

Melosh, H.J., 2007. A hydrocode equation of state for SiO2. Meteorit. Planet. Sci. 42, 
2079–2098.

Ottonello, G., Zuccolini, M.V., Belmonte, D., 2010. The vibrational behavior of silica 
clusters at the glass transition: ab initio calculations and thermodynamic impli-
cations. J. Chem. Phys. 133, 104508.

Pahlevan, K., Stevenson, D.J., Eiler, J.M., 2011. Chemical fractionation in the silicate 
vapor atmosphere of the Earth. Earth Planet. Sci. Lett. 301, 433–443.

Perdew, J.P., Burke, K., Ernzerhof, M., 1996. Generalized gradient approximation 
made simple. Phys. Rev. Lett. 77, 3865–3868.

Qi, T., Millot, M., Kraus, R.G., Root, S., Hamel, S., 2015. Optical and transport proper-
ties of dense liquid silica. Phys. Plasmas 22, 062706.

Richet, P., Bottinga, Y., Denielou, L., Petitet, J., Tequi, C., 1982. Thermodynamic prop-
erties of quartz, cristobalite and amorphous SiO2: drop calorimetry measure-
ments between 1000 and 1800 K and a review from 0 to 2000 K. Geochim. 
Cosmochim. Acta 46, 2639–2658.

Saika-Voivod, I., Sciortino, F., Grande, T., Poole, P.H., 2004. Phase diagram of silica 
from computer simulation. Phys. Rev. E 70, 061507.

Saika-Voivod, I., Sciortino, F., Poole, P.H., 2000. Computer simulations of liquid silica: 
equation of state and liquid–liquid phase transition. Phys. Rev. E 63, 011202.

Sarnthein, J., Pasquarello, A., Car, R., 1995. Structural and electronic properties of 
liquid and amorphous SiO2: an ab initio molecular dynamics study. Phys. Rev. 
Lett. 74, 4682–4685.

Schick, H.L., 1960. A thermodynamic analysis of the high-temperature vaporization 
properties of silica. Chem. Rev. 60, 331–362.

Schnurre, S., Gröbner, J., Schmid-Fetzer, R., 2004. Thermodynamics and phase stabil-
ity in the Si–O system. J. Non-Cryst. Solids 336, 1–25.

Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, 
D., 2002. The SIESTA method for ab initio order-N materials simulation. J. Phys. 
Condens. Matter 14, 2745–2779.

Stebbins, J., Carmichael, I., Moret, L., 1984. Heat capacities and entropies of silicate 
liquids and glasses. Contrib. Mineral. Petrol. 86, 131–148.

Trave, A., Tangney, P., Scandolo, S., Pasquarello, A., Car, R., 2002. Pressure-induced 
structural changes in liquid SiO2 from ab initio simulations. Phys. Rev. Lett. 89, 
245504.

Usui, Y., Tsuchiya, T., 2010. Ab initio two-phase molecular dynamics on the melting 
curve of SiO2. J. Earth Sci. 21, 801–810.

van Beest, B.W.H., Kramer, G.J., van Santen, R.A., 1990. Force fields for silicas 
and aluminophosphates based on ab initio calculations. Phys. Rev. Lett. 64, 
1955–1958.

Woodcock, L.V., Angell, C.A., Cheeseman, P., 1976. Molecular dynamics studies of the 
vitreous state: simple ionic systems and silica. J. Chem. Phys. 65, 1565–1577.

Zhang, Y., Guo, G., Refson, K., Zhao, Y., 2004. Finite-size effect at both high and low 
temperatures in molecular dynamics calculations of the self-diffusion coefficient 
and viscosity of liquid silica. J. Phys. Condens. Matter 16, 9127.

https://doi.org/10.1016/j.epsl.2018.03.015
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib416C66656574616C32303031s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib416C66656574616C32303031s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib416E67656C6C48656D6D61746932303133s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib416E67656C6C48656D6D61746932303133s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib416E67656C6C48656D6D61746932303133s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4261727261746574616C31393937s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4261727261746574616C31393937s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib547261766973s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib547261766973s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib436F6E6E6F6C6C7932303136s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib436F6E6E6F6C6C7932303136s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib64654B6F6B6572537469787275646532303039s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib64654B6F6B6572537469787275646532303039s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib64654B6F6B6572537469787275646532303039s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib46616C6B6574616C32303134s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib46616C6B6574616C32303134s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib46616C6B6574616C32303134s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib46616C6B6574616C32303134s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib476F6E7A616C657A436174616C646F6574616C32303136s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib476F6E7A616C657A436174616C646F6574616C32303136s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib476F6E7A616C657A436174616C646F6574616C32303136s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4869636B736574616C32303035s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4869636B736574616C32303035s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4869636B736574616C32303035s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4869636B736574616C32303036s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4869636B736574616C32303036s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4869636B736574616C32303036s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib48503131s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib48503131s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib48503131s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib486F72626163684B6F6231393939s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib486F72626163684B6F6231393939s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib486F72626163686574616C31393936s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib486F72626163686574616C31393936s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib496F73696C6576736B69796574616C32303134s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib496F73696C6576736B69796574616C32303134s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib496F73696C6576736B69796574616C32303134s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4B61726B696574616C32303037s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4B61726B696574616C32303037s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4B61726B696574616C32303133s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4B61726B696574616C32303133s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4B696566666572416E67656C6C31393838s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4B696566666572416E67656C6C31393838s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4B696D6574616C32303132s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4B696D6574616C32303132s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4B6E7564736F6E4C656D6B6532303133s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4B6E7564736F6E4C656D6B6532303133s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4B726175736574616C32303132s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4B726175736574616C32303132s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4B726175736574616C32303132s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4B726175736574616C32303132s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4C616E67654361726D69636861656C31393837s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4C616E67654361726D69636861656C31393837s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4C617363617269736574616C32303134s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4C617363617269736574616C32303134s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib52494E4753s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib52494E4753s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib52494E4753s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4D63436F796574616C3230313662s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4D63436F796574616C3230313662s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4D63436F796574616C3230313662s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4D63436F796574616C3230313661s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4D63436F796574616C3230313661s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4D63436F796574616C3230313661s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4D656C6F736832303037s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4D656C6F736832303037s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4F74746F6E656C6C6F6574616C32303130s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4F74746F6E656C6C6F6574616C32303130s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib4F74746F6E656C6C6F6574616C32303130s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib5061686C6576616E6574616C32303131s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib5061686C6576616E6574616C32303131s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib504245s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib504245s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib51696574616C32303135s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib51696574616C32303135s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib5269636865746574616C31393832s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib5269636865746574616C31393832s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib5269636865746574616C31393832s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib5269636865746574616C31393832s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib5361696B61566F69766F646574616C32303034s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib5361696B61566F69766F646574616C32303034s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib5361696B61566F69766F646574616C32303030s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib5361696B61566F69766F646574616C32303030s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib5361726E746865696E6574616C3139393550524Cs1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib5361726E746865696E6574616C3139393550524Cs1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib5361726E746865696E6574616C3139393550524Cs1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib53636869636B31393630s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib53636869636B31393630s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib5363686E757272656574616C32303034s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib5363686E757272656574616C32303034s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib536F6C65726574616C32303032s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib536F6C65726574616C32303032s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib536F6C65726574616C32303032s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib5374656262696E736574616C31393834s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib5374656262696E736574616C31393834s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib54726176656574616C32303032s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib54726176656574616C32303032s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib54726176656574616C32303032s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib55737569547375636869796132303130s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib55737569547375636869796132303130s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib424B53s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib424B53s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib424B53s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib574143s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib574143s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib5A68616E676574616C32303034s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib5A68616E676574616C32303034s1
http://refhub.elsevier.com/S0012-821X(18)30137-7/bib5A68616E676574616C32303034s1

	Bulk properties and near-critical behaviour of SiO2 ﬂuid
	1 Introduction
	2 Methods
	3 Direct observations of critical behaviour from pressure-volume isotherms
	4 Structural properties
	5 Thermodynamic bulk properties and response functions
	6 Boiling curve of silica
	7 Dynamic properties
	8 Discussion and conclusions
	Acknowledgements
	Appendix A Supplementary material
	References


