Principles of phase diagrams

M. Hillert

From the thermodynamic basis for phase
equilibria, various types of phase diagram are
developed and their characteristics described.
The following types of diagram are distinguished:
state diagram, property diagram, potential phase
diagram, molar phase diagram, and phase
diagrams with a mixture of variables. Projections
and sections of such diagrams are also examined.
Finally, phase diagrams for constrained equilibria
are discussed. IMR/ 146
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INTRODUCTION

Phase diagrams were put on a scientific basis through
Gibbs’ thermodynamic treatment of heterogeneous
equilibria.' Following Gibbs, many researchers
examined the shape of phase diagrams in great detail,
making extensive use of the Gibbs phase rule, and
also of more sophisticated thermodynamic consider-
ations. Bakhuis Roozeboom?® and Schreinemakers®
deserve special mention. The basic principles of phase
diagrams were thus well established by around 1910.

The extensive experimental work on phase equili-
bria in alloys, which started in the 1920s, resulted in
arevived interest in phase diagrams and in definitions
of some new rules for construction.*® Today it is
again possible to see a revived interest in phase
diagrams, caused particularly by the application of
computer techniques to the calculation of phase
diagrams. Such calculations are based upon thermo-
dynamic principles and should automatically result
in theoretically correct phase diagrams. One might
think that this fact should decrease the need for a
deeper understanding of phase diagrams. However,
there are several reasons why this need is instead
increasing:

(i) in producing an efficient program for the
calculation of phase diagrams, it may be help-
ful to apply a deep understanding of their
topology

(ii) the time taken to write a program and the time

needed to run it in the calculation of a phase

diagram may be decreased if one does not
require the computer to do everything, but
also relies upon some manual work

the computer can produce new or unusual

types of section or projection of phase

(iii)

diagrams, which may require some deep
understanding for a correct interpretation.

In view of such reasons, it may be justified again to
review the principles of phase diagrams. Such a
review will now be given, and an attempt will be made
to make the discussion as general as possible.
However, in the discussions of thermodynamics, only
one kind of work will be considered, that against a
hydrostatic pressure. Furthermore, all surface effects
will be disregarded. Topological aspects will be dis-
cussed frequently. As a general reference to the appli-
cation of topology to phase diagrams, a paper by
Prince’ may be used.

STATE DIAGRAMS

From thermodynamics, the following expression for
the change of the internal energy of a system from
an initial state can be derived:

dU=TdS=PdV+Y udn~D dé (la)
1

where i represents the different components and their
number is denoted by ¢. D is the driving force for an
irreversible, spontaneous reaction inside the system,
and ¢ measures the extent of such an internal reaction.
In chemical literature, D is called affinity and is
denoted by A" D d¢ must be positive for a spon-
taneous reaction. When treating states of equilibrium
and so-called reversible changes between such states,
one omits the term D d& On the right-hand side of
equation (la) there remain ¢+2 extensive variables
(S, V,n) and c+2 intensive variables (T} P, i), Of
all these wvariables, ¢+2 are independent, and
equation (la) has been constructed after choosing
all the extensive variables as independent. Equation
(1a) can be written in a condensed form by denoting
all the extensive variables by X' and their conjugate
intensive variables by Y, For convenience, D d¢ is
omitted from the summation. The condensed form is
then:

dU=Y YidX'-Dd¢ (1b)

It should be noticed that the intensive variable rep-
resenting the pressure is —P in this general scheme.
As a consequence, —P will be used in many of the
diagrams to be presented below.

In the set of independent variables used in equation
(1), each extensive variable can be exchanged for its
conjugate intensive variable, and new thermodynamic
functions are thus introduced - for instance, the Gibbs
energy G, which is defined as U - TS+ PV, from
which:

dG=~SdT+VdP+Y yu; dm~Dd¢ (2)
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1 Property diagram for unary system with one phase;
properties of this phase are represented by a
surface

This new function also has ¢-+2 independent vari-
ables, 2 intensive and ¢ extensive ones, in addition
to &

It is well known that an attempt to replace all the
extensive variables with their conjugate intensive vari-
ables does not result in a new thermodynamic func-
tion, but in a relation between the intensive variables:

0=—-8SdT+ VdP-3 ndu;—Dd¢ . . . (3a)

This relation gives a convenient method of examining
whether a certain change could take place spon-
taneously, by studying whether D d¢ is positive or
not:

Dd¢=-SdT+VdP-Y nidw . . . . (3b)

Suppose a system is at equilibrium with respect to all
possible internal reactions. Then D=0, and a vari-
ation of the potentials produced by actions from the
outside must obey the following relation, known as
the Gibbs-Duhem relation:

SdT"VdP'f"Zn,d/L,:O s - s e s . s (461)
or, in the condensed form:
YXdY'=0 .. ... ... . .... (4b)

The ¢+2 intensive variables are thus related, and
only ¢+1 of them can be regarded as independent.
This is a result of the fact that the value of an intensive
variable is independent of the size of the system, and
that the size cannot be defined by a set of values of
intensive variables. It may thus be concluded that the
state of a system is completely defined by giving the
values of ¢+2 variables and requiring that at least
one of them is extensive. One may, for instance, select
c+1 intensive variables and the size of the system
itself n, represented by the total number of atoms.
The state is thus defined by giving a point in a
(¢+2)-dimensional diagram. Such a diagram rep-
resents all the possible states, and may be called a
state diagram. When discussing the properties of
materials, one is usually not interested in the size of
the system. The state is then sufficiently well described
by ¢+1 intensive variables, and the state diagram can
be constructed with ¢+ 1 axes.

PROPERTY DIAGRAMS

The set of ¢+ 1 axes can be selected from the ¢+2
intensive variables by omitting any one of them. It
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2 Property diagram for unary system with two
phases; u&—u2 is driving force for g — «

may sometimes be useful to use a diagram with all
¢+2 intensive axes, whereupon the Gibbs-Duhem
relation results in a surface (or hypersurface if ¢> 1)
which represents the thermodynamic properties of
the system. Such a diagram, with the surface included,
may be regarded as a property diagram, and one for
a unary system is illustrated in Fig. 1. From any point
on the surface, a normal to any side of the diagram
may be drawn. The projected point defines the state
in terms of ¢+ 1 of the variables, and the side of the
diagram, having c+ | axes, may be regarded as a state
diagram. The position of the point on the normal
gives the value of the omitted variable, i.e. the
property. In the present discussion u, will always be
omitted from the definition of the state, and u, is
thus the property that will primarily be discussed. It
is then convenient to rewrite the Gibbs-Duhem rela-
tion by moving the term ns du A to the left-hand side.
By also dividing by n,, the expression

el

c—l . .

d/uLAz“‘Sm dT+ Vm dr - Z X; d/L]=“z X:ndY‘
I |

(5)

is obtained, where S, V., and x; are all molar quan-
tities, and are represented by the same notation X',
They are here counted per mole of A rather than the
usual mole of all components. By applying the funda-
mental equation (1) to a system with one mole of A
atoms, it is possible to obtain, for reversible reactions,
the expression

et

c—1
dUn=TdS,—PdV,+ ¥ wdx=Y Y dXxi
1 1
(6)

since xo =1 and dx, = 0. Component A is thus omit-
ted from the summation in equation (6) as well as
that in equation (5). Both equations have c¢-+1
independent variables. In order to distinguish
between the independent variables used in equation
(5) and those used in equation (6), which are all
intensive quantities, the former ones will be called
‘potentials’ and the latter ones ‘molar quantities’, a
designation reminiscent of their close relation to
extensive quantities.

With given values for the set of ¢+ 1 independent
variables, it is possible to consider more than one
possible atomic arrangement, in this context called
‘phase’. Such a case, for a unary system where the
surfaces, representing the properties of two such
phases, intersect is illustrated in Fig. 2. If the values




3 Construction of a phase diagram by projecting a
property diagram; two phases can exist at line of
intersection of their property surfaces

of ¢+1independent variables, in this case T and - P,
are fixed experimentally, the value of w, may be
lower for the a-phase than for the B-phase. Equation
(3) would then indicate that D d¢ is positive for a
change from B to @, and @ would thus be the stable
phase. Integrating over this change in the property
diagram gives:

fDdf/nA=Mﬁ—MX>O N )

PHASE DIAGRAMS

It is only along the line of intersection of their pro-
perty surfaces that the two phases « and @ in Fig. 2
can exist together without a driving force for transfor-
mation from one to the other. The projection of this
line on the side of the diagram, i.e. the state diagram,
will separate two regions, where one phase or the
other is stable (Fig. 3). A state diagram with such
lines is called a phase diagram (Fig. 4). The two
regions may be called one-phase fields, and the line
may be called a two-phase field if the definition of
the word field is generalized to mean a geometrical
element of any dimensionality. It is evident that the
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4 Simple phase diagram obtained by construction
shown in Fig. 3
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5 Unary phase diagram with three phases; broken
lines are metastable extrapolations of two-phase
equilibria

phase diagram may be regarded as the projection of
4 property diagram on a state diagram.

In German a phase diagram is often called state
diagram (Zustanddiagram), but here ‘state diagram’
will be reserved to mean the coordinate system in
which the phase diagram is plotted.

It is easy to see that the surface representing
the properties of a third phase may intersect with the
previous surfaces in the property diagram, and in the
phase diagram one may obtain a point where all three
phases can co-exist in equilibrium, a three-phase field
(Fig.5). The dashed lines represent metastable
extrapolations of the two-phase fields, representing
equilibrium states if the third phase is absent for some
reason. It is evident that such extrapolations go into
the one-phase field for the new phase. Itis also evident
that all angles between stables lines must be less than
180°.

Since the phase diagram is obtained simply by
adding some new information to the state diagram,
it also has c-+1 axes, and it is evident that the
dimensionality of the one-phase fields, i.e. the vari-
ance of the one-phase equilibria, is the same. It is
easy to see that the variance of higher-order phase
equilibria decreases by one unit for each additional
phase, i.e.

v=ct2-p L. (®)

This is the Gibbs phase rule, in which ¢ is the number
of components and p is the number of phases. The
variance v is often called the number of degrees of
freedom. The rule is based upon the fact that the
Gibbs-Duhem relation can be applied to each phase.
Since all the independent variables in the Gibbs-
Duhem relation are intensive, the Gibbs phase rule
can be applied most easily to phase diagrams plotted
with the intensive variables T, —P, and u; on the axes.
Other types of phase diagram will be discussed below,
and the present type will be called potential phase
diagrams, because the intensive variables T, ~P, and
w; may be regarded as potentials. This word implies
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that they must have the same value in all parts of a
system at equilibrium.

POTENTIAL PHASE DIAGRAMS
PROPERTIES OF POTENTIAL PHASE
DIAGRAMS

The topology of potential phase diagrams is very
simple. It has been illustrated in Fig. 5 for the simple
case of a unary system, and it is easy to include new
phases. The important thing to realize is that it is
extremely unlikely that there will be an additional
phase in the unary system which has such properties
that its surface in the property diagram would go
through the point of intersection of the three previous
phases. This possibility will be completely neglected,
and this is in agreement with the Gibbs phase rule,
which predicts a variance of —1 for the case of four
phases in a unary system. Even the most complicated
phase diagram for a unary system is thus composed
of surfaces representing divariant one-phase fields,
lines representing monovariant two-phase fields, and
points representing invariant three-phase fields. Such
a diagram is built from a combination of elementary
units such as the one shown in Fig. 5. In this respect,
it is closely related to the two-dimensional arrange-
ment of grains in a polycrystalline, single-phase sheet
material. Smith® has discussed the topology of a two-
dimensional array of grains, and his conclusions also
hold for a two-dimensional potential phase diagram.
The following derivation is taken from his discussion;
it will be modified below when treating different cases.

Euler has given the following topological rule for
a network of lines on a closed surface, such as the
surface of a sphere:

€—-E+P=2 .. ... .. ... O

@ is the number of polygons formed by the lines, i.e.
one-phase fields or grains; & is the number of lines,
i.e. edges of the polygons, which may represent two-
phase fields or grain boundaries; and ¥ is the number
of points of intersection, which may represent three-
phase fields or grain corners. Since each edge is shared
by two polygons:

26=Yn?, . .. ... ... .. (0

where 2, is the number of polygons with n edges,
or corners. For the network of lines now under con-
sideration, three polygons meet at each corner, giving
the expression:

3=YnPn . . . e (1])

Inserting these expressions and ? =Y ?, into
equation (9) gives:

2(6—n)P,=12 (12a)
When applying Euler’s rule to a planar network of
lines, Smith® obtained a value of 6, rather than 12,
because he chose not to regard the space outside a
closed network as a polygon.

The average number of edges per polygon 7 is
obtained as:

A=nP.)Y P.=6—12/3 P, (12b)
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and for a network of many polygons, the average
number approaches 6.

It is always necessary to limit the consideration of
a phase diagram or an array of grains to a certain
region, and one usually selects a rectangular frame.
The four corners of the frame will be considered to
be corners where two edges meet. The left-hand side
of equation (11) is then changed to 3% —4 and the
right-hand side of equation (12a) to 4. Suppose there
are m intersections between lines, representing two-
phase fields or grain boundaries, and the sides of the
frame. The surrounding space is then a polygon with
m+4 edges. By omitting that polygon from the
summation, the expression

Y(6-m)Po=m+2 . . ... .. ... (13)

which may be more convenient to use, is obtained.

In addition to the topological conditions, there is
an important geometrical condition which must be
obeyed. For a grain structure, the balance of surface
tensions requires that each of the angles formed at a
corner must be less than 180°. This implies that the
extrapolation of a boundary between two grains must
fall inside the third grain. As already mentioned, this
rule also holds for phase boundaries, and is illustrated
in Fig. 5. It is often referred to as the 180° rule, but
of course, the physical reason for its existence is quite
different.

POTENTIAL DIAGRAMS IN
HIGHER-ORDER SYSTEMS

The three-dimensional potential phase diagram of a
binary system will now be considered, again choosing
a as the dependent potential. In view of equation
(8), the variance of the three types of phase equilibria,
already discussed, will increase by one unit, and a
four-phase equilibrium will appear as a point (Fig.
6a). Again, the remote possibility that an additional,
fifth phase has such properties that it can take part
in the phase equilibrium which is already invariant
will be neglected. A complicated binary phase
diagram is thus simply composed of elementary units
of the type shown in Fig. 6a. This is the same unit
from which the three-dimensional arrangement of
grains in a polycrystalline, single-phase material is
constructed. Smith’ has discussed the topology of
such arrays of grains, and most of his conclusions
are valid for potential phase diagrams. In such cases,
the Euler rule is modified by the number of polyhedral
bodies &:

G-C+P-B=0 . . . ... ..... (14

It is not possible to derive an expression similar to
equation (12a) in terms of 98 from which the average
number of sides (neighbours) can be calculated. It
has been shown that it is 14 for each grain in a special
regular arrangement of grains; however, in the actual
cases found in nature, the arrangement is less regular,
and the average number of sides is less than 14. It is
most probable that the same will hold for the one-
phase fields in phase diagrams.

Each of the sides of a one-phase field in a three-
dimensional diagram is a polygon, and Euler’s rule
can be applied to the two-dimensional network cover-
ing the surface of a one-phase field. For a one-phase
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a diagram with three potential axes; one-phase fields meet two and two at surfaces, three and three at lines, and all four at a
point; extrapolation of each three-phase line goes into one-phase field of fourth phase: b projected diagram; extrapolations
are arranged so as to reveal directions of two-phase surfaces

6 Binary phase diagram with four phases; compare Fig. 18

field with 14 sides, equation (12a) yields:
14(6—-7)=12
=ii=5;

For a one-phase field with 12 sides, an average of
exactly five corners is obtained for the polygonal
sides. Studies of actual grain structures in nature have
shown not only that the average is close to five, but
that polygons with five sides are most common.

The 180° rule in two-dimensional grain structures
and potential phase diagrams has its equivalent in
three dimensions. It is illustrated by the extrapolated
lines in Fig. 6a, and states that the extrapolation of
a line of intersection between three grains or one-
phase fields falls within a fourth grain or one-phase
field. This implies that in a two-dimensional projec-
tion, such as Fig. 6b, all angles must be less than 180°.

In the general case, the elementary unit can be
described by the number of various geometrical ele-
ments which intersect. The type of geometrical ele-
ment can be defined by giving the number of phases
in equilibrium p, or the variance obtained from
equation (8). Each element of variance v, can be
regarded as the intersection between a number of
elements of variance v,, where v, < v,. This number
n can be evaluated from the expression

(Pb) [ Po! ] (C+2" Ub)
n= T e e =

Pa Pa!(Po—pa)! ct2—-u,

This relation is here given without proof. Its validity
can be tested by application to various cases. As an
example, it is possible to calculate the number of

surfaces v, =2 that meet at the point v,=0 in the
binary diagram in Fig. 6a:

(2+2—0) (4) ¢

n= = =

2+2-2 2

The number of volumes that meet at surfaces in a
ternary system is obtained as:

_<3+2—1>_<4)__6
"=\3+2-3)7\2

(15)

PROJECTIONS OF POTENTIAL

PHASE DIAGRAMS

In order to show a three-dimensional phase diagram
in two dimensions, one may use projections. Figure
6b is the projection of the phase diagram in Fig. 6a
on the T-uy plane. One can still see and distinguish
the various points and lines, but the one-phase
volumes are reduced by one dimension and overlap
with the projected two-phase surfaces.

Equilibria with more than four phases can appear
in systems with more than two components, and the
complete phase diagram of such a system will have
more than three axes. As a consequence, such a phase
diagram can only be visualized by projection, and in
order to obtain a two-dimensional picture, one must
project at least twice. In any case, such a two-
dimensional picture will also show points and lines
for the two highest-order phase equilibria. All other
phase fields in this picture are two-dimensional, and
many may overlap one another,

In order to adapt the Gibbs phase rule to projec-
tions of phase diagrams, it is necessary to introduce
the number of projections N,,. The number of axes
R in the final diagram is equal to ¢+ 1 - N, and one
obtains, from equation (8):

v=R-+N,+1~-p: p=1+ N,
v=R: P=<1+N,

(16)
(17)

Phase fields with p <1+ N, will thus overlap phase
fields with p=1+ N,,, and cannot easily be shown
in the diagram.

In a quinary system, each point is the intersection
of lines to a number of

_ 5+2—0) _(7) —7
"“\s+2-1)"\6) "
The point represents an invariant equilibrium
between seven phases and the lines represent equili-
bria between six phases. It is self-evident that one

can form seven such equilibria by omitting each one
of the seven phases. A two-dimensional projection of
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7 Projection of quinary phase diagram obtained by
projecting in directions of chemical potentials of
four components. Two invariant, seven-phase
equilibria are shown. For one, phases are numbered
1-7, and adjoining six-phase lines are identified by
omitted phase in parentheses; five-phase surface
extending between lines (5) and (7) is identified by
the two omitted phases in parentheses

such a phase diagram is shown in Fig. 7. It is obtained
by projecting the complete phase diagram four times
in the directions of the chemical potentials of all
components except one. Of course, all seven linear
phase fields belonging to each invariant equilibrium
can be seen. Following a procedure used by
Schreinemakers, each of the linear phase fields radiat-
ing from a point is here identified by giving, in paren-
theses, the omitted phase.

In Fig. 7, line (2) intersects a line radiating from
another invariant equilibrium. It must be realized that
this point of intersection does not represent an
invariant phase equilibrium; in a three-dimensional
projection, one would see that the two lines pass each
other on different levels. In the complete potential
phase diagram, all the geometrical elements discussed
represent phase fields of various types. It is important
to notice that, on projection, geometrical elements
that are not phase fields may be formed; this point
of intersection is an example.

Each invariant point in a quinary system is also
the intersection of surfaces to a number of

(5 +2- o) (7)

n= = =21

5+2-2 5

Such a surface represents an equilibrium between five
phases and extends between two of the six-phase lines
in a manner similar to the two-phase surfaces in Fig.
6a. The five phases are those that are common to the
two lines. The five-phase equilibria can thus be iden-
tified by giving, in parentheses, the two omitted
phases. The five-phase equilibrium between phases
1, 2,3, 4, and 6 is thus marked as (5, 7) in Fig. 7.

SECTIONS OF POTENTIAL DIAGRAMS

Another way to present the phase diagram of a
higher-order system is to make sections at constant
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8 Section of potential phase diagram in Fig. 6a at
constant uy; in general, the four-phase equilibrium
will not appear in a section

values of some of the potentials. As an example, a
section of Fig. 6a at a constant value of up is shown
in Fig. 8.

The Gibbs phase rule can be modified to apply to
equipotential sections simply by subtracting the num-
ber of sectionings N,. Since the number of axes R in
the final phase diagram is now equal to c¢+1— N,
suitable modification of equation (8) gives:

v=c+2—-p—N,=R+1l-p . . .. .. (18)

According to this equation, the invariant equilibrium
in the complete phase diagram would have a variance
of —1 after one sectioning and should not show up
in the section. It could be objected that the section
in Fig. 8 could have been placed exactly through the
four-phase point in Fig. 6a; however, this possibility
will be neglected for the same reason put forward in
neglecting the remote possibility of having an addi-
tional phase in equilibrium with phases which already
form an invariant equilibrium. The argument that it
will never be possible in practice to choose exactly
the right value to intersect a point may be used in
this context. (When discussing sections that go exactly
through the point representing an invariant equili-
brium, Palatnik and Landau® call them irregular sec-
tions.)

It is evident from Fig. 8 that a diagram obtained
by one sectioning has the same topology as a diagram
for a system with one component less. This observa-
tion can be generalized in the light of equation (18),
and it may be concluded that the topology of a
diagram obtained with or without sectionings
depends only upon the final number of axes R.

The topology of a diagram may be discussed in
terms of the number of various elements which inter-
sect. By inserting p from equation (18) into equation
(15), the more general form

(P _ R-—vb-i—l)
(M)
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9 Appearance of two-phase field between two one-phase fields in unary system, when a molar quantity is

introduced instead of its conjugate potential

is obtained, where v, and v, are now the variances
of the geometrical elements in the final phase diagram,

It is important to notice that the topology of an
equipotential section is the same whether T or —P
or a chemical potential w; is kept constant. From
a mathematical point of view, all potentials are
equivalent.

It is sometimes convenient to reduce the number
of axes in a phase diagram by first sectioning and
then projecting. Equations (16) and (17) also apply
to such cases, but equation (19) does not.

MOLAR PHASE DIAGRAMS

What happens if the potentials in a phase diagram
are replaced by their conjugate molar quantities will
now be examined. It should first be noticed that the
two variables in a conjugate pair both increase or
both decrease if one moves through a stable one-phase
field at constant values of all the other molar quan-
tities. As a consequence, the one-phase fields have
the same general shape in a molar diagram as in a
potential diagram. However, phases in equilibrium
with each other will no longer fall on the same point,
but will be separated by a distance equal to the
difference in their molar quantity. It is common to
connect such points by tie lines, as illustrated in
Fig. 9.

It may seem self-evident that the one-phase fields
will separate from each other, thus leaving room for
the two-phase field with its tie lines, when a molar
quantity is introduced as an axis instead of its conju-
gate potential. This can be proven by applying the
Gibbs-Duhem relation in the form given by equation
(5). Consider first two phases which are initially in
equilibrium with each other. The system is then
moved from equilibrium by changing the value of
one potential Y?, keeping the other potentials in the
summation constant. Applying equation (5) to each
of the two phases and taking the difference gives:

(XB-XIdYi=d(ps—puk) (20)

Suppose B is the phase favoured by an increased Y?
value. Applying equation (7) to the case where 8
becomes stable for positive d Y7 gives:

d(ua—uhk)
dy’

It is self-evident that the two one-phase fields will
move apart by a distance X — X/® when X7 is intro-

X8 xie = >0 (21)

duced as an axis instead of Y'. Since X g larger
than X3 according to equation (21), it can be seen
that the one-phase fields will actually separate and
leave room for the two-phase field in between, X -
X1y being the length of the tie line. As an example,
Fig. 9 shows the effect of introducing §,, instead of
T in a unary system. The pressure axis is shown in
the diagrams, but the pressure is kept constant during
the change; thus, all the tie lines are horizontal.

A similar diagram would apply when the molar
content xy is introduced instead of w,, in a multicom-
ponent system. To show the result in a two-
dimensional diagram, one may use a section at con-
stant values of T, w¢, wp, ete. The length of the tie
lines will be x{; - x3, and that length will be a positive
quantity. However, it is important to notice from
equation (5) that x, is here defined as ny/na. When
the ordinary mole fraction is used, it may happen
that the tie lines have a negative length, whereupon
the two one-phase fields will overlap in a thin region.
The same may happen for other molar quantities if
they are not defined in the proper way, i.c. by dividing
the extensive quantity with ny.

The manner in which a unary phase diagram with
an invariant phase equilibrium changes when two
molar quantities are introduced is shown in Fig. 10,
It can be seen that the variance of each phase field
increases by one unit for each molar quantity being
introduced, until it is equal to the number of axes in
the phase diagram. Thus, the number of molar quan-
tities which are used as axes in the final diagram N,,,
and also the number of molar quantities which have
been kept constant during sectioning N,,,, should be
added to equations (16) and (17). On the other hand,
the number of molar quantities in the direction of
which a projection has been made should not be
added, because in this case it makes no difference
whether the potential or the molar quantity is used,
Equations (16) and (17) are thus modified as follows:

v=R+ Ny + Ny + N+ | ~-p:
p ? 1 + N]'H'+ Nl)'\ﬂ\+ Nl’(’l“i (22)
v=R: p$]+Npr+ Nmu+Nms (23)

The length of tie lines has already been calculated
above. It is also relevant to discuss their shape. If
their whole purpose were to connect two noints, they
could be given any shape, but they are always drawn
as straight lines. This is not trivial, as will now be
shown.

International Metals Reviews 1985 Vol, 30 No. 2
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axes

A point in a two-phase field in a molar diagram
represents a mixture of the two phases. If f* and f*
are the fractions of o and B, defined as n*/n and
n?/n, the molar volume of the mixture is given by:

V. _ve+vE V“gj+y_fgf

m= ==

n n n n n on

=fVat+rfVE oL (24)
Similarly:

Sm=f"Sm+fPSE . ... ... .. .. (25

It follows that the mixture falls on the straight line
between the points representing the individual
phases. By making the tie lines straight, it is thus
possible to make any point on a tie line representative
of a mixture of the two phases represented by its end
points; the fractions of the two phases can be evalu-
ated from the position of the point relative to the end
points, this relationship usually being expressed in
terms of the so-called lever rule. Of course, this con-
clusion is valid only if all the molar quantities have
been defined in the same way, i.e. with the same
definition of n. This is ascertained if all the molar
quantities are defined through equation (5), which is
obtained by dividing equation (4) by n. One may
choose n as the total number of atoms, as the number
of A atoms, or in many other ways. It should be
emphasized that this derivation of the lever rule
applies to molar diagrams of any number of
dimensions. It also applies to property diagrams with
molar quantities on the axes.

international Metals Reviews 1985 Vol. 30 No. 2

POINTS OF EXTREMUM FOR
TWO-PHASE EQUILIBRIA

The rule that two one-phase fields are separated from
each other by a positive distance, when the proper
molar quantity is used, is not as trivial as it may
appear. It was discovered experimentally by
Konovalov'® when measuring the vapour pressure of
liquid solutions of water and various organic sub-
stances. In addition, he found two cases with a press-
ure maximum and realized that the liquid and vapour
must have the same composition at such a point. A
case of this type is shown in Fig. 11, and it is evident
that it is simply due to the fact that the molar quantity
which is used xy replaces a potential whose axis
happens to be parallel to a tangent to the linear
two-phase field in the potential diagram. Other than
that, the system has no unique properties at that point.

I\ 7
-P -P
vapour vapour
liquid liquid
iqu by iqui X,
- =t

11 Isothermal section of phase diagram for binary
system, showing a point of maximum pressure; at
that point, the two phases must have the same
value of xg
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Its importance stems simply from the fact that compo-
sition is often used as an experimental parameter.
For this reason, such a point is often given a special
name, azeotropic or congruent point, because a sys-
tem undergoes an azeotropic or congruent transfor-
mation on passing through it.

It is evident that the Konovalov rule does not only
apply to composition. It may be generalized as fol-
lows: suppose that a linear two-phase field in a Y*- Y"
diagram, determined at constant values of all the
other potentials except w,, shows a Y! maximum or
minimum; at the point of extremum, the two phases
must have the same value of XX,

A third potential Y™ will now be added to the
consideration. A possible shape of a curved two-phase
surface in the three-dimensional potential phase
diagram is shown in Fig. 12a. Points of tangency for
tangents parallel to the Y*-axis are marked with a
dotted line. Any such point represents an extremum
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AL 2 TS

x
k
xm
—

ﬂ /5+O(

+ff

gency for lines parallel to Y*-axis are marked with dotted line; b
y XX phases still coincide along dotted line; ¢, d as & and b,
replaced by its conjugate molar quantity X7; phases along dotted line have separated, but still fall

Effect of replacing potentials by their conjugate molar quantities in three-dimensional phase diagram with

value in sections parallel to the Y*-axis. This is
demonstrated in a horizontal section. The same
equilibrium after introducing X¥ instead of Y* is
shown in Fig. 12b. The one-phase fields are now
separated, except at the points of tangency. At each
such point the two phases have the same value of
X%, in agreement with the generalized Konovalov
rule.

In Fig. 12a there is also a vertical section, and
again the point of tangency represents an extremum
value. This is a geometrical consequence, but it is
also a necessary consequence of the generalized
Konovalov rule. If two phases in equilibrium have
the same value of XX the two-phase equilibrium
must give an extremum for all other potentials. The
vertical section in Fig. 12b looks just like the horizon-
tal section.

The effect of introducing a molar quantity on
another axis is shown in Figs. 12¢ and d. The two

International Metals Reviews 1985 Vol. 30 No. 2
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a three-dimensional potential phase diagram; dotted lines represent points of tangency for lines parallel to Y* and Y™ axes;
point of tangency for vertical Y*~Y™ plane is at intersection of these lines, and is a maximum for Y'; b as a, but with Y* and
Y™ replaced by their conjugate molar quantities X¥, and Xm: vertical and horizontal lines are tie lines corresponding to points
of tangency in a; & and B have same values of X¥ and XM at point of tangency of XX -XT plane

13 Effect of replacing potentials by their conjugate molar quantities in three-dimensional phase diagram with

curved two-phase surface in potential diagram

phases at the points of extremum will separate, but
will still have the same XX value.

A case where there is a point of tangency for a
plane parallel to the Y*-Y™ plane is shown in Fig.
13a. That point represents an extremum value for the
potential on the third axis, Y'. As demonstrated in
Fig. 13b, the two phases must have the same value
of X, as well as X™, at that point. This diagram
could, for instance, apply to the equilibrium between
a ternary intermetallic phase and a melt at constant
pressure. Y' would then be the temperature and X¥
and X the mole fractions x5 and Xc. At the point
of extremum, the two phases would have the same
values of xp and xc; they thus have the same composi-
tion, meaning that the extremum point is a congruent
transformation point.

The Konovalov rule may thus be generalized fur-
ther. Suppose a two-phase field in an n-dimensional
potential diagram shows an extremum in one of the
potentials. At the point of extremum, the two phases
have the same value for all the molar quantities,
conjugate to the remaining potentials in the diagram.
If these molar quantities define the composition com-
pletely, the point of extremum is a congruent trans-
formation point. Furthermore, consider any other
potential in addition to the n potentials included in
the diagram. This potential has been kept at a constant
value in the diagram. If one attempted to vary such
a potential, yet still retaining the two phases in equili-
brium, one would find that the additional potential
also has an extremum. Its extremum value is equal
to the previous constant value if the potential that
primarily showed an extremum is now kept constant
at the value of that extremum.

POINTS OF EXTREMUM FOR
HIGHER-ORDER EQUILIBRIA

A linear three-phase field in a three-dimensional
potential diagram (Fig. 14a) will now be considered.

International Metals Reviews 1985 Vol. 30 No.2

The result of introducing two molar quantities is
illustrated in Fig. 14b. In order to show the three-
phase field better, parts of two two-phase fields have
been removed. Consider next the case where the
three-phase line in the potential diagram is curved
and has a maximum in one of the potentials Y'. For
the sake of simplicity, it will be assumed that the
tangent to the three-phase line at the point of
maximum Y' is parallel to the Y*-axis (Fig. 15a).
The diagram is modified as shown in Fig. 15b when
X, is introduced instead of Y. It is evident that the
three phases in equilibrium have the same X X value
at the maximum point, but fall on a straight line in
all other cases. It is shown in Fig. 15¢ how the original
diagram is modified when another molar quantity X
is introduced instead of Y™. In this case, the three
phases in equilibrium always fall on a straight line,
at the maximum as well as everywhere else. Finally,
the modification when both these molar quantities
are introduced at the same time is shown in Fig. 15d.
The three-phase line then opens up into a triangular
prism, such as the one shown in Fig. 14. However,
in the present case, the three-phase line is bent and,
at the maximum point, the triangular cross-section
has degenerated into a line.

In the general case, the tangent to the three-phase
line at the point of maximum Y’ in Fig. 15a is not
parallel to the Y*-axis, but has a different direction
in the Y*-Y™ plane. This case can be illustrated
simply by choosing a new coordinate system in Fig.
15a, obtained by rotating the present one around the
Y'-axis. This will not change the construction of Fig.
15d, because the new X variables can be obtained as
linear combinations of the present ones. It is thus
possible to conclude that the three phases will fall
on a straight line in the X-XT diagram obtained
by sectioning at an extremum value of Y for the
three-phase equilibrium. On the other hand, Fig. 156
and ¢ will be modified; in particular, Fig. 15b will
no longer show a point of contact between the three
phases.
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a three-dimensional potential phase diagram; b as a, but with Y* and Y' replaced with their conjugate molar quantities X*
and X71; three-phase line has opened up into triangular prism (parts of two-phase fields have been removed to show three-phasg

field better)
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a three-dimensional potential phase diagram; at point of maximum Y!, tangent to three-phase line happens to be parallel to
Y*-axis; b, ¢ as a, but with either Y* or Y™ replaced by their conjugate molar quantities XX, or X, respectively; three-phase
equilibrium is shown with tie lines; d as a, but with both Y* and Y™ replaced by their conjugate molar quantities; three-phase
line has opened up into bent triangular prism, but at point of maximum Y!, tie triangle degenerates into straight line

Effect of replacing potentials by their conjugate molar quantities in three-dimensional phase diagram with
curved three-phase line in potential diagram: dotted lines represent points of tangency for tangents to three
two-phase surfaces parallel to Y*-axis (parts of two-phase fields have been removed for simplicity in b, ¢,
and d)
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16 Four-phase equilibrium in diagram with three molar
axes, shown with dashed lines; diagram has
tetrahedral form, but is covered by triangular
prisms representing three-phase equilibria

Most of the practical applications of the above
result concern extrema in temperature and pressure
in ternary systems. One may, for instance, study a
three-phase equilibrium at constant pressure, using
T, ug, and uc as experimental variables. If one finds
a temperature maximum on the three-phase line, then
one knows that the three phases are there co-linear
in the composition triangle. From this fact it also
follows that the three-phase equilibrium has a press-
ure extremum for the same compositions.

The same reasoning can be applied to higher-order
phase equilibria, but the visibility is then lost, and
one must use analytical methods. Usually, a four-
phase equilibrium in a diagram with three molar axes
has the form of a tetrahedron. This is demonstrated
in Fig. 16, which is constructed from Fig. 6a. The
tetrahedron is covered by triangular prisms represent-
ing the one-dimensional three-phase fields in Fig. 6a.
The hidden edges of the tetrahedron are shown with
dashed lines. In some cases, the tetrahedron is degen-
erated, and the four phases in a diagram such as Fig.
16 would fall on a plane. This happens when the
four-phase equilibrium has an extremum value for
a fourth independent potential. In the same way,
the five phases in a five-phase equilibrium would
fall in the same three-dimensional volume in four-
dimensional molar space when the five-phase equili-
brium has an extremum for a fifth independent
potential,

With reference to equations (5), (20), and (21), it
has been emphasized that the present discussion is
based upon the definition of all molar quantities in
terms of dividing the extensive quantities by the num-
ber of A atoms, when w, is treated as the dependent
variable among the potentials. However, when the
final conclusion concerns the positions of phases in
the complete compositional space, one can transform
the mole fractions, defined relative to A, to the
ordinary mole fractions.

The results for three-phase equilibria are closely
related to the Alkemade rule for three-phase
triangles.'! All the results may be described by a
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17 Relative positions of four phases along V,,-axis
introduced instead of —P-axis through invariant
equilibrium in Fig. 6a

further generalization of the Konovalov rule. Suppose
a p-phase field in an R-dimensional potential diagram
(R = p) shows an extremum in one of the potentials.
At the point of extremum, the p phases have values
for the R—1 molar quantities, conjugate to the
remaining potentials, which fall in a (p—2)-
dimensional section of the (R ~ 1)-dimensional molar
space. Suppose the R-dimensional diagram to be an
equipotential section for an additional potential. If
one starts to vary that potential under the same phase
equilibrium, keeping the first potential constant at its
extremum value, it will be found that the constant
value of the new potential in the original diagram is
also an extremum value.

The rules concerning points of extremum for phase
equilibria can be derived algebraically. The geometric
method was chosen here because it forms the basis
for a discussion of the topology of projected potential
phase diagrams in the next chapter.

TOPOLOGY OF PROJECTIONS OF
POTENTIAL PHASE DIAGRAMS

As demonstrated by Figs.5 and 6, the elementary
units of potential diagrams are very simple from the
topological point of view. In this sense, the projec-
tions of such diagrams are more interesting. This is
evident if one considers the dashed extrapolations in
Fig. 6a and in the projected picture Fig. 6b. Between
the lines in Fig. 6b there are two extrapolations in
one case, one extrapolation in two cases, and no
extrapolation in one case. In fact, this is the only way
to draw four lines in different directions and obey
the 180° rule. It is evident that, in the projected
direction, the four phases are related to each other
in different ways. This phenomenon will now be
examined.

If potential axes are chosen for the complete, three-
dimensional phase diagram of a binary system, the
four phases of an invariant equilibrium will fall at
one point. If a molar quantity is introduced, say, X!,
instead of Y', then the four phases will fall on a line,
just as the three phases in the three-phase equilibrium
in Fig. 10a fall on a line in Fig. 10b. In that case, it
is easy to see in what order the phases arrange them-
selves along the line: B must be placed between «
and v, otherwise there will be some overlapping of
the one-phase fields. Using the same reasoning, it is
easy to see in which order the four phases of Fig. 6a
will arrange themselves when a molar quantity is
introduced. One simply looks at the directions of the
two-phase surfaces. Their relative positions along a
Vm-axis introduced instead of the — P-axis through
the invariant phase field in Fig. 6a are demonstrated
schematically in Fig. 17.

When the phase diagram of Fig. 6a is projected in
the P-direction and the picture given in Fig. 6b is
formed, much information is lost. However, the infor-
mation regarding the order of arrangement along the
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18 Modification of Fig. 6 by rotation of g+ y surface until it is parallel to —P-axis; in —P projection, B+ y+8
and a + B+ vy lines will now coincide, and their extrapolations will not be visible

projected direction when the molar quantity is intro-
duced is not lost, because some conclusions can still
be drawn regarding the directions of the two-phase
surfaces. They are situated between the three-phase
lines. For example, the B -+ surface goes from the
B+vy+d to the a+B+7y line in Fig. 6b. 1t is thus
possible to get an impression of which way the 8+
surface is leaning, relative to the direction of pro-
jection.

"~ Suppose one could gradually change the properties
of the system in such a way that the 8 + v surface in
Fig. 6a would rotate around an axis roughly parallel
to the up-axis. One could thus make the two lines
B+vy+é and o+ B+ y in the projection approach
each other without changing the topology of the pro-
Jjected diagram. At the moment of coincidence, one
has a situation such as that illustrated in Fig. 18a in
three dimensions and in Fig. 18b in the projection.
The B+ v surface is now parallel to the direction of
projection. If the B+ surface is not planar, the
projected lines will not be straight. If they still
coincide at the invariant point, the surface is there
parallel to the direction of projection, i.e. parallel to
the — P-axis. It is thus possible to apply the Konovalov
rule, as developed for Fig. 12a and b, and conclude
that the B and y phases have the same value of V,,
at the invariant equilibrium if the — P projections of
the a+pB+v and B+ y+ & lines coincide when they
meet at the four-phase point. Evidently, before the
gradual rotation of the B+ surface the B8 and vy
phases must have been neighbours along the V,, line
in Fig. 17.

From Fig. 6b, it can be seen that it is also possible
to make the «+vy+8 and o+ B+ 8 lines approach
each other after a rather large, gradual rotation,
without changing the topology of the projected
diagram. The a and 8 phases must also be neighbours.
Finally, it is also possible to make the 8+ y+ & and
a+y+ 34 lines approach each other. In this case they
will overlap, because tliey will go in the same direc-
tion, rather than in opposite directions. However, it
is still possible to conclude that the y and & phases
must also be neighbours. The only way to arrange
the four phases relative to one another is thus the
one illustrated in Fig. 17. It is also possible to con-
clude that the lines must be arranged relative to one

another as shown in Fig, 6b, or by its mirror image,
when the V,, values of the four phases are arranged
as shown in Fig. 17.

It is interesting to note that the two neighbours
which were identified when the two three-phase lines
overlapped, the y and & phases, are situated between
the other phases. The correctness of this conclusion
can be tested by inspecting Fig. 6a. It is also interest-
ing to note that one can make the a-+B+8 and
a+p+vylines in Fig. 6b approach each other without
changing the topology, and it would thus seem that
the « and B phases should also be neighbours.
However, the 180° rule prevents these two lines from
coinciding.

As an example of a possible application, a ternary
system studied at constant pressure is now considered.
The phase equilibria could then in principle be rep-
resented in a three-dimensional diagram such as Fig.
6a. However, if the phase equilibria are studied by
measuring two potentials (T and wy) only, one would
only obtain a projection similar to Fig. 6b., Suppose
a diagram of the form of Fig. 18b is obtained when
the data for four three-phase lines are plotted in the
T-up diagram. There is one more independent vari-
able, although it has not been measured. Assume that
it is me; the diagram in Fig, 18b should then be
regarded as a u¢ projection. Since two of the three-
phase lines seem to coincide, it is possible to identify
two phases which must have almost the same value
of xc. However, it should be remembered that x.- is
defined by dividing n¢ by na. As a consequence, it
makes no difference whether w, is regarded as the
dependent variable and u as the projected one or
vice versa. The conclusion from Fig. 18b is that the
B and v phases in the invariant equilibrium have the
same nq/ ny ratio.

The binary case will now be reconsidered, and what
happens if three of the four phases have the same V,,
value will be investigated. The monovariant equili-
brium between these three phases would have two
phases in common with each of the other three
monovariant equilibria. In the P projection one
would thus expect the line corresponding to the first
monovariant equilibrium to coincide with all three
of the other lines. However, these other lines should
not coincide with one another, because they do not
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18 Modification of Fig. 6 by rotating entire diagram until 8+ + 8 line is parallel to —P-axis; all three surfaces,
B+v, ¥+ 8, and 6+, are then parallel to —P-axis. In —P projection, B+ v + & will degenerate to a point, and
will thus coincide with all the other lines without them coinciding with one another

have two phases of the same V,, value in common.
How these conditions can be satisfied is demonstrated
by Fig. 19, which holds for a system obtained by
gradually changing the properties of the system
shown in Fig. 6a in such a way that the whole picture
is rotated until the B+ y+ 8 line points in the —P
direction. All three of the adjoining two-phase sur-
faces (B + v, v+ 6, and 6+ B) are then parallel to the
— P-axis, as they should be if the phases 3, v, and &
have the same V,, value. The projection is shown in
Fig. 19b; it shows only three three-phase lines,
because the fourth, the B8+ v + 8 line, is perpendicular
to the plane of this diagram, and has thus degenerated
to a point.

One cannot rotate the picture of Fig. 6a in such a
way that three of the lines coincide in the projection.
If such a case was found, it would mean, for instance,
that @ and 8 must have the same value of the molar
quantity conjugate to the projected potential, but so
must 8 and <, and also y and 8. As a consequence,
all four phases must have the same value, and not
only three, but all four, of the monovariant lines must
coincide in the projection.

PROJECTIONS OF HIGHER-ORDER
INVARIANT EQUILIBRIA

This kind of topological examination may be exten-
ded to higher-order invariant equilibria, although the
visibility is then lost. However, it has been shown by
analytical methods'*"'* that the same principles that
have been derived here by inspection apply. A four-
dimensional phase diagram must be projected twice
in order to yield a two-dimensional picture, and it
may show .an invariant five-phase equilibrium and
five adjoining four-phase lines. If no lines coincide,
they can arrange themselves in three different ways,
as illustrated in Fig. 20. For a closer discussion of
the phases taking part in the five-phase equilibrium,
the two potentials on the axes will be kept constant
at the values of the invariant point, while the two
projected potentials will be replaced by their conju-
gate molar quantities. The five phases will fall on
different points on the plane formed by the two molar
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quantities, and Fig. 21 illustrates the arrangement of
the phases in the three different cases. Three phases
may here be regarded as neighbours if their points
can be connected to form a triangle with no other
point inside and if the triangle can be changed into
a line without any one of its points moving inside
any other such triangle. If two lines in the projected
potential phase diagram coincide, then the three com-
mon phases fall on a straight line in the molar
diagram.

A five-dimensional phase diagram must be projec-
ted three times in order to yield a two-dimensional
picture, and the six phases in an invariant equilibrium
will be arranged in certain ways in the three-
dimensional space formed by three molar quantities.

The rule relating the coincidence of lines in a
projected potential phase diagram to the positions of
the common phases in the space formed by the molar
quantities was called the ‘Coincidence theorem’ by
Morey. From the above discussion of the binary case,
its close connection with the Konovalov rule is
evident. In view of the fact that the Konovalov rule
can be generalized, it may also be possible to general-
ize the coincidence theorem. This may be demon-
strated by the following example. Suppose that two
of the points, « and §, in the first picture of Fig. 21
coincide. Then 8, a, and v fall on a line, and lines
(B) and (&) in Fig. 20 should coincide. However, 83,
8, and a would also fall on a line, and so lines ()
and (g) in Fig. 20 should also coincide. As a con-
sequence, all three lines, (B8), (v), and (&), should
coincide. It is thus possible to generalize the coin-
cidence theorem as follows. Consider a two-
dimensional projection of an R-dimensional poten-
tial diagram. It may have an invariant equilibrium
involving R+1 phases. From this point, R+1
monovariant equilibria, each with R phases, radiate.
The theorem concerns the positions of the phases in
the (R —2)-dimensional space formed by the molar
quantities conjugate to the projected potentials. If r
of the phases fall in an (r—2)-dimensional section
through that space, then the monovariant equilibria,
which contain the r phases, coincide in the two-
dimensional projection. Their number is R+1—r.
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20 Possible diagrams obtainable by projecting an Y*- Y'-Y™-Y" phase diagram in Y™ and Y" directions; points
represent invariant five-phase equilibria; the five lines emanating from each point represent four-phase
equilibria, and are identified by giving omitted phase in parentheses; broken lines are metastable extrapola-

tions

The information contained in the projected
diagram can also be used to predict the nature of the
monovariant equilibria close to the invariant point.
Suppose that the e-phase is the vapour phase. The
(¢) line in Fig. 20 would then represent the four-phase
equilibrium between condensed phases, and Fig. 21
shows their relative positions. If an experiment is
carried out under constant values of Xy and X,
then Fig. 21 shows the character of the phase transfor-
mation occurring when one changes the Y* and Y
potentials in such a way that one crosses the (&) line
in Fig. 20. In the left-hand case, one obtains « -
B = 8+, but in the other two cases @ = B+ v+,
because « is there situated inside the B-y-8 triangle.
It may thus be concluded that the character of a
four-phase transformation obtained by changing the
temperature at constant pressure may be predicted
from a projected potential diagram involving an addi-
tional phase, for instance a gas, and an additional
potential, for instance the pressure.

TOPOLOGY OF MOLAR PHASE
DIAGRAMS

In a complete diagram with only molar quantities on
the axes, their number N,,, is equal to ¢+ 1, and all
the phase fields have the same variance as the diagram
has axes, since equation (23) is satisfied for all phase
fields. Because N, = N, = 0, equation (23) becomes:

p<1+Ny+ Nyt Nuw=2+c . . . . . (26)

The topology of such a diagram is fairly simple,
although more complicated than that of a potential

A\Xn
mop £ A

diagram. A two-dimensional molar diagram is com-
posed of units obtained by a modification of the
elementary unit shown in Fig. 5. Its modification is
illustrated in Fig. 10, where Fig. 10a shows the initial
unit and Fig. 10d the modified unit. It is interesting
to note that the topology of the one-phase fields is
unchanged, and for a diagram with many phases, the
average number of sides for the one-phase fields must
thus approach six. As shown in Fig. 10d, the number
of sides of the three-phase fields is always three. By
combining two units, it is easy to see that the two-
phase fields will always have four sides. In addition
to these rules, an expression for the average number
of sides for all the phase fields may be derived, starting
from Euler’s rule, equation (9). Equation (10) still
holds, but equation (11) must be replaced by the
following, since four lines now meet at each corner:

46 =Y n%, . . . . . . . . .. .. @7
Equation (9) will thus give:
S(@-mPy=8 .. ... ... .. (28)

The average number of sides of all the phase fields
is thus obtained as

A=y nPo/y Po=d4=8/L Py . . . . . . (29)

In a molar phase diagram with many phases, the
value of the last term can be neglected, and thus
the average number of sides of the phase fields
approaches four.

For a two-dimensional phase diagram which is
limited by a rectangular frame, the rule takes a simpler
form. Suppose there are m intersections between lines

3 A

WAL

y Y
Xn

21 Schematic picture of positions of five phases from Fig. 20 in XT-X7, plane at constant values of Y* and Y!
which give invariant equilibrium. Change occurring when lines (¢) and (B) in left-hand picture are rotated to
approach each other can be illustrated by moving point « towards straight line between & and y; middle
picture is obtained by letting (¢) and () lines pass one another, thus making point & cross §-y straight line;
right-hand picture is obtained by letting (a) and (8) lines rotate and pass one another, whereupon & will

cross B—y line
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22 Elementary unit of two-phase molar phase diagram
and its topological equivalence

in the molar phase diagram and the sides of the frame.
Counting these intersections as corners, including the
four corners of the diagram, and taking into account
the fact that only three polygons meet at m corners
and only two polygons at 4 corners gives the
expression:

4E-m—-4)+3m+(2x4)=Yn?, . . . (30)
Equation (9) will thus give:
m+y, (4-n)®,=0 . . . .. .. ... (31

On omitting the surrounding space, which has m+4

sides, from the summation of polygons, the
expression
YV@-n)P.=0 . .. .. ... (32

is obtained. The average number of sides for the phase
fields is thus exactly four, independent of the size of
the network.

At the beginning of this chapter, it was stated that
all phase fields have the same variance in a diagram
with only molar quantities. However, this rule is not
obeyed when there is some stoichiometric constraint
in a phase. Suppose the molar content of a component
cannot vary in a phase. When the chemical potential
for this component is replaced by its molar content,
the one-phase field will contract and lose one
dimension. When discussing the topology of phase
diagrams, it is helpful simply to assume that there is
a small variation of composition in such phases.

PHASE BOUNDARIES

Since all the phase fields in a molar diagram have
the same variance as the diagram has axes, it is evident
that all other geometrical elements, surfaces, lines,
and points in a three-dimensional diagram, are not
phase fields. They separate phase fields and may be
called phase boundaries. When discussing the
topology of a molar phase diagram in terms of the
phase boundaries, it is possible and convenient to
choose a smaller elementary unit which has only one
corner. Such a unit for a two-dimensional molar
diagram is shown in Fig. 22a; two phase fields meet
at each line, and four phase fields meet at the point.
Topologically, Fig. 22a can be represented by two
intersecting lines (Fig. 22b), and a complicated, two-
dimensional molar diagram by a network of crossing
lines. The rule that the average number of sides of
the phase fields is four thus seems very natural,
because one can form a diagram containing only
rectangles by using two families of parallel lines.
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23 Topological equivalence of elementary unit in
three-dimensional molar phase diagrams; Fig. 16
is composed of four such units

It can be seen by inspection of the three-
dimensional diagram in Fig. 16, that it is possible to
divide it into four identical, elementary units, each
composed of a point where eight phase fields meet,
although only four of them are shown in Fig. 16. The
one-phase field and the three two-phase fields are
omitted. Also, six linear phase boundaries radiate
from these points. They are shown for the 8 and 6
points in Fig. 16. It was pointed out by Palatnik and
Landau® that, topologically, this elementary unit can
be represented by three intersecting planes (Fig. 23).
Evidently, the topology of a complicated three-
dimensional molar diagram can be represented by a
system of intersecting surfaces.

In the general case, the elementary unit can be
described by the number of various geometrical ele-
ments which meet. The dimensionality of these ele-
ments will be denoted by a and b. Palatnik and
Landau gave the following equation for the number
of elements with a dimensionality a which meet at
an element of dimensionality b in a molar phase
diagram with R axes:

n:z“-b(f:f) N € X))

Masing* observed that the number of phases will
change by one unit when one crosses a boundary with
b=R-1, ie. a surface in a three-dimensional
diagram or a line in a two-dimensional molar
diagram; the latter case is illustrated in Fig. 24a.
Palatnik and Landau® were able to generalize Mas-
ing’s boundary rule and to give it a mathematical
formulation:

D*+D"=R~b . .. ........ (38

where D" and D~ are the number of phases that
appear and disappear, respectively, as one crosses
the boundary. This rule will be referred to as the
‘MPL boundary rule’ (after Masing, Palatnik,
Landau). -
The elementary unit of a two-dimensional molar
diagram is subject to two important geometrical rules.
One is the 180° rule. Of the three extrapolations given
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24 Elementary unit of two-dimensional molar phase diagram obeying Schreinemakers’ rule

in Fig. 5, two should appear in Fig. 24, since the form
of the one-phase fields is essentially preserved when
molar quantities are introduced instead of potentials,
but they cannot enter the one-phase [ield, because of
the 180° rule. A possible case is shown in Fig. 24b,
where both extrapolations have been placed inside
the two-phase fields. However, the 180° rule does not
determine whether they should actually fall inside
the two-phase fields or the three-phase huld This
question was examined by Schreinemakers® when
studying isobaric-isothermal sections of ternary
diagrams. He found that the extrapolations must
either both fall inside the three-phase field or fall one
inside each of the two two-phase fields. His rule can
be generalized, as will be seen below.

In a potential phase diagram, all geometrical ele-
ments of the same dimensionality represent the same
kind of phase fields. This is not the case in molar
diagrams. There, all the phase fields will have the
same dimensionality of a= R, although they rep-
resent equilibria between different numbers of phases,
from 1to ¢-+2. All elements of a lower dimensionality
will be boundaries between phase fields with different
numbers of phases. It may be interesting to calculate
how many phase fields with p phases meet at a boun-
dary of dimensionality b. This number is given by

_(R-b) 5
np—p_d.............(3.)

where d is a new parameter which serves to distin-
guish between different kinds of boundary of the
same dimensionality b. The d parameter can have
any value from 1 to c-+2— R+ b. As an example, take
the linear boundaries, b =1, in Fig. 10d. It is a two-
dimensional diagram (R = 2) for a unary system, (¢ =
1), and d will thus vary from 1to | +2—2+1=2. For
d=1:

n=(0)-(0)-
(o)==

This is thus a boundary between a one-phase field
and a two-phase field. For d =2:

ne(302) ()
n=()-(0)-

This is a boundary between a two-phase field and a
three-phase field. Examples of both kinds of linear
boundary are shown in Fig. 10d. As another example,
consider the linear boundaries (b=1) in Fig.16. It
is a three-dimensional diagram (R=3) for a binary
system (¢ =2), and d will thus vary from 1 to 2-+2-
34+ 1=2 Ford=1:

= (20)-(0)-
() -(0) -
(7))

This is thus a boundary where one one-phase field,
two two-phase fields, and one three-phase field meet.
For d =2:

e (s) ()=
n=(322)-(0)-2
n=(22)-C)-

This is & boundary where one two-phase field, two
three-phase fields, and one four-phase field meet.
Examples of both kinds of linear boundary are shown
in Fig. 16.

By these examples, it is demonstrated that d is
nummcally identical to the smallest number of
phases in any of the phase fields meeting at the
boundary.

SECTIONS OF MOLAR PHASE
DIAGRAMS

Sections of molar phase diagrams are quite useful
and are in common usage. Since all phase fields in a
molar phase diagram have the same variance as the
phase diagram has axes, all kinds of phase field may
show up in a section. The topology of the sections is
simplified if it is again assumed that it will not be
possible to place a section through a point. The
topology of a section will then be the same as the
topology of a complete phase diagram with one com-
ponent less. This fact is evident from equation (33),
since the values of R—b and a —b do not change on
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25 Two sections through phase diagram in Fig. 16;
sections are shown with broken lines. Two-
dimensional boundaries of 8-phase field in Fig. 16
have been added here, and one section goes
through two of them

sectioning. As an example, two sections through Fig.
16 are indicated in Fig. 25. In each case, the section
gives the same arrangement of lines as in Fig. 22a.
Furthermore, the MPL boundary rule applies to the
sections, since R — b does not change. However, there
is one difference between a section and a complete
phase diagram of a system with fewer components,
which can be illustrated with the help of equation
(35). As already emphasized, R and b will both
decrease by one unit on sectioning, and R—b will
thus remain unchanged. However, the number of
components ¢ does not change, and the range of d
values is thus larger in a sectioned, higher-order sys-
tem than in a lower-order system. For a diagram
obtained by sectioning N, times at constant values
of molar quantities, d may have integral values from
1 to

dmax:C+2—R+b=1+Nms+b ot (36)

since the number of axes R is now equal to ¢+ 1~
Nns- In the case discussed earlier in this chapter,
-phase fields meeting at points (b =0), as in Fig. 22a,
were considered. For one sectioning, d.,=2, and
there should thus be two different kinds of point,
having d equal to 1 or 2. Of course, this is the same
result obtained in the complete phase diagram for
phase fields meeting at lines (b =1), because that is
where the points are formed by the sectioning of lines.
There are thus two different kinds of line in Fig. 16,
although topologically they look the same. This was
also demonstrated by the second example discussed
in connection with equation (35).

Whether the Schreinemakers rule applies to points
with different values of d will now be considered,
starting by investigating a point on the intersection
between two boundaries of the type where one new
phase appears. The MPL boundary rule, equation
(34), indicates that such boundaries have b= R —1.
In a three-dimensional diagram, such boundaries
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would be surfaces, since they have b=3-1=2. In
Fig. 25 two such points have been marked. Com-
parison with Fig. 16 shows that one is on the boundary
of the B phase field, while the other is on the boundary
of the a+ B phase field; consequently, they have
d =1 and 2, respectively. For each such point there
will be two tie lines going to the two new phases. No
matter how many dimensions the phase diagram has,
it is, in principle, possible to make a two-dimensional
section through the three points, although, as pointed
out above, it is extremely unlikely that such a section
can be made in practice. However, in such a section
there will be four lines radiating from the point of
interest - the two straight tie lines and the sections
through the two boundaries, which may be curved.
These sections are indicated in Fig. 25. Thus, exactly
the same arrangement as that illustrated in Fig. 24a
will be obtained, whether « in this figure represents
one or more phases.

Since what is now being considered is a phase
diagram constructed with molar quantities only, a
discussion of thermodynamic properties should be
based upon the internal energy. For reversible
changes, equation (1) yields

ct2

dU=TdS~PdV+Y w;dn;=Y YdX' . (37)
1 1

It is here convenient to regard the entropy and volume
as components, whose amounts are expressed by S
and V, and whose chemical potentials are T and —P.
The introduction of ¢+2 new components instead of
the old ones will now be effected by selecting this
many points in the state diagram. They will each be
identified by a subscript j, and their positions in the
state diagram are given by sets of X' values, which
will be denoted by X;. The amount of such a com-
ponent will be expressed by the number of atoms n;,
and, as usual, the molar quantities are obtained as
X/ n;, which will here be denoted by xj. In terms of
the old set of components, any system can be charac-
terized by giving the X' values, and that description
can be transformed to the new set of components by
the relation .

X‘:ZX}=Zx}nj T < 1))
j ]

With a fixed set of new components, xj: are fixed and,
for a small movement of the system in the state
diagram,

dU=3 Y'dX'=Y Y'Y xidn=Ydn ¥ Yixi (39)
i i j i i

It is thus possible to regard = Y'x} as the chemical
potential of the new component j:

U

pp=YL Yixj=—m
1 J

(40)
For these generalized chemical potentials, the follow-
ing relation is then obtained:

QHJ.__...___.(.)ZU _% (41)

Consider now a system represented by the point on
two boundaries, discussed above, including the end-
points of the two tie lines in a set of new components,



equipotential line
closer to k

equipotential line
further away from k

a the two phase boundaries both extrapolate outside «~k-|
triangle when du/dn=au/dn>0; b both extrapolate
inside the triangle when au,/am=aw/in, <0

26 Proof of Schreinemakers’ rule

these points being designated k and | (see Fig. 26).
At the point under consideration, one of the two
boundaries represents equilibrium with k, and is thus
an equipotential line for k. If it extrapolates outside
the «-k-1 triangle, the potential of k must increase
on moving closer to the point I, because this path
intersects equipotential lines for k situated closer to
the point k, i.e.

Ak
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Then, from the above relation,
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from which the second boundary must also extrapo-
late outside the a~k-1 triangle. On the other hand, if
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27 Calculated phase diagram for system with eight
components; complete phase diagram has two
potential axes and seven molar axes, and has been
sectioned at one constant potential (pressure) and
six constant molar quantities (molar contents);
Schreinemakers’ rule holds at all intersections:
numbers given are number of phases in each phase
field; after Ref.15
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28 Use of Schreinemakers’ rule to decide which phase
fields have equal numbers of phases

the k boundary extrapolates into the triangle, a move-
ment towards the point | will intersect equipotential
lines for k further away from the point k. Both deriva-
tives must then be negative, and both boundaries must
extrapolate into the triangle. It has thus been shown
that the extrapolations of the two phase boundaries
under consideration must either both fall outside the
highest-order phase field or both fall inside it, in
agreement with Schreinemakers” rule. It may be
emphasized that the rule also holds llor equipotential
sections. In order to prove it in such a case, one must
use a thermodynamic function which allows the
corresponding potentials to be kept constant; for
instance, T and —P in the case actually considered
by Schreinemakers. The above reasoning must then
be applied to the Gibbs energy, instead of the internal
energy. ‘

In the derivation of the Schreinemakers rule it is
essential that the two boundaries of the highest-order
phase field are straight lines. This will be true for all
sections of phase fields with p= R + N,.--1; for in-
stance, the four-phase field in Fig. 25. In general, it
will not be true in other cases. However, experience
shows that the Schreinemakers rule is obeyed in most
cases, and it may be used as a convenient guide when
otherinformation is lacking. As an example, the result
of a computer-operated calculation of a section
through an eight-component system is presented in
Fig. 27. The rule is satisfied at all the corners in this
diagram, in spite of the fact that it has one potential
axis.

Usually, the Schreinemakers rule is used to predict
the directions of phase boundaries. On the other hand,
if the phase boundaries are given ~ for instance, from
calculation or experiment - the rule can then be used
to decide the number of phases in the various phase
fields. Suppose the arrangement in Fig. 284 is given,
but the numbers of phases in the four phase fields
are not known. One should then extrapolate all the
lines; two phase fields will then contain one extrapo-
lation each, and these phase fields will be opposite
one another. According to Schreinemakers’ rule, these
will be the phase fields with the same number of
phases, d +1in Fig. 28¢. Of the other two phase fields,
one will contain two extrapolations and the other
none. These phase fields will contain one phase more
and one phase less than the others, respectively.
However, the rule does not allow us to tell which has
more and which less. It would be possible to predict
the number of phases in all the phase fields of Fig.
27 by this method, if it were known that the phase
field to the. very left has two phases.

It is interesting to note that most of the polygons
in Fig. 27 have four sides. It seems that this number
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29 Phase diagram from Fig. 10b, reproduced without
tie lines; thick line represents (a+fB+y) one-
dimensional phase field

is not only the required average value, as shown
above, but may also be the predominating number in
sections of molar phase diagrams.

MIXTURES OF VARIABLES

It is very common to include potentials as well as
molar quantities in the set of independent variables.
The topology of the resulting phase diagrams can be
very complicated. However, there is an important
exception. It has been shown that sectioning at a
constant potential gives a diagram with the same
topology as a lower-order potential phase diagram.
If molar quantities are then introduced on all the
remaining axes, the topological rules for a molar
diagram are obeyed, and this is also true after further
sectioning at constant values of some molar quan-
tities. The topological rules for molar diagrams may
thus be applied, even if sectioning has been made at
constant values of a mixture of potentials and molar
quantities. The only requirement is that molar quan-
tities are used on all the remaining axes. It is even
possible to relax this requirement somewhat, because
one can apply the MPL boundary rule to the phase
diagram in Fig. 27, in spite of the fact that it has one
potential axis. This is possible because all the phase
fields have the same variance as the diagram has axes,
which is actually all that is required. The maximum
number of phases allowed in any phase field in order
for topological rules of molar diagrams to apply can
easily be calculated from equation (23). For the sys-
tem shown in Fig. 27, p<1+ N_,+ N, =1+1+6=
8, although actually this value is never reached, since
there is a maximum of six phases in any phase field
in Fig. 27.

The more difficult cases, where all the phase fields
do not have the same variance as the diagram has
axes, will now be discussed. Palatnik and Landau®
made it quite clear that the MPL rule was derived for
purely molar phase diagrams. Nevertheless, they tried
to apply it to phase diagrams with one or two potential
axes, but encountered some difficulty in connection
with phase fields of a lower variance than the phase
diagram has axes. In order to explain the difficulty,
they regarded such a phase field as degenerate. In
the present paper, the potential phase diagram has
been used as the starting point, and it hardly makes
sense to regard phase fields of a lower variance as
degenerate when they have the correct value accord-
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ing to the Gibbs phase rule. In order to avoid confu-
sion with the nomenclature of Palatnik and Landau,
the term ‘phase field’ was chosen here, instead of the
more common term ‘phase region’, which was used
by Palatnik and Landau. In the present nomenclature,
phase fields in a diagram may have different vari-
ances, and, for any particular case, one can evaluate
the variance from equations (22) and (23).

To solve their problem, Palatnik and Landau sug-
gested that their rule should not be applied to a phase
diagram with potential axes until the phase diagram
had been modified to resemble a phase diagram with
only molar axes. This means that all the phase fields
should be expanded until they are characterized by
variances that are numerically equal to the number
of axes of the phase diagram.

Zhou'® has recently discussed this problem and
proposed a solution that does not involve expansion.
He emphasized the importance of making a distinc-
tion between different kinds of line in the phase
diagrams, and even applied his method to phase fields
which are not in direct geometrical contact, but only
connected through their contacts to different points
of an invariant phase equilibrium. His method thus
seems to have some characteristics in common with
that using potential phase diagrams.

For the present discussion, it seems sufficient to
use the MPL rule. This can be applied successfully
without expanding any phase fields, if it is used only
for contacts between two phase fields, where are least
one has the same variance as the phase diagram has
axes, and not used for phase fields separated by a
third phase field. With these restrictions, the MPL
rule can even be applied to a purely potential phase
diagram.

As an example, consider the — P-S,, phase diagram
in Fig. 10b, which is reproduced in Fig. 29 without
tie lines. All the boundaries between phase fields are
drawn with thin lines. The thick line represents a
three-phase field, @ + 8+ . The MPL rule cannot be
applied to the 8 and « + y phase fields, because they
are separated by the o+ +y phase field. For the
contact between 8 and a + B+ v, the rule gives

b=R—-(D"+D7)=2-2=0 . .. ... (44

in agreement with the fact that the two phase fields
meet at a point. For the contact between « +y and
a-+f8:

b=R—-(D"+D7)=2—-(1+1)=0 (45)

This is also correct, because the two phase fields do
not make contact along the thick horizontal line,
where they are separated by the « + 8 + y three-phase
field, but only at the left end-point of the horizontal
line.

Evidently, it is valuable to be able to distinguish
between phase fields and boundaries. It will also be
helpful to be able to predict the variance of a phase
field for a known number of phases. This is given by
equations (22) and (23), which can be applied to
mixtures of variables and to various types of section
and projection. These equations should be supple-
mented by a rule for calculating the maximum number
of phases in any phase field in a certain section, since
this number cannot be evaluated from equation (22)
by putting v=0, because it is not certain that there
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30 Scheil diagram reproduced from Ref. 4; this is, in
effect, a simplified projection of a potential phase
diagram

can be an invariant phase field in the section. It is
easy to see that each molar quantity that is used as
an axis in the final section has increased the variance
of the highest-order phase field in the section by one
unit. The number of molar axes in the section is
denoted by N, and this is equal to the variance for
the highest-order phase field, i.e.

VE Ny - s s e s s e e . (46)
Thus, from equation (22),
Poax = R+ Npr + Nyt 1 N )

Itshould be reiterated that N, represents the number
of molar quantities that have been kept constant
during sectioning.

SCHEIL DIAGRAMS
By tradition, most phase diagrams are produced with
temperature as the vertical axis and composition on
the horizontal plane, keeping the pressure constant
at [ atm. For a ternary system, one would thus need
a three-dimensional diagram, which is difficult to
show in two dimensions. In order to show the main
features of such a system, one sometimes uses a
‘reaction scheme’, of the form suggested by Scheil.'”
Asimple example, taken from Masing,* is reproduced
in Fig. 30. It is worth emphasizing that this is really
a projection of a potential diagram, such as the one
shown in Fig. 6b. However, no effort has been made
to draw it to scale. The important aim is to show the
series of reactions that occurs in the system with
decreasing temperature., The relative popularity of
the Scheil diagram may be taken as an indication of
the advantage of potential phase diagrams as a com-
plement to temperature-composition phase diagrams.
As demonstrated in Fig. 30, the lines in the potential
diagram are reproduced in the Scheil diagram. Each
point is substituted by a box, which not only gives
the phases in the invariant equilibrium, but also indi-
cates the way in which they react when the tem-
perature is lowered. It should be emphasized that, in
some cases, the character of the reaction depends
upon how the amount of a phase has been defined,
and this information should thus be given together
with the diagram. Sometimes there is also a box
indicating the reaction taking place along a line, but
this may be misleading, since the lines represent
monovariant equilibria, in which phases may change
their compositions with temperature; thus, the
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characici of the reaction may depend upon the
average conposition of the system. '

PHASE DIAGRAMS TO SUIT
EXPERIMENTAL VARIABLES

The tradition of preferring temperature-composition
phase diagrams is a result of the fuct that temperature
and composition are the most common experimental
variables. From suitable experiments, one can get
direct information on that type of diagram, and from
the diagram one can make direct predictions of the
result of a new experiment. When computerized phase
diagrams become available, the situation may change.
The thermodynamic information will be stored in a
data bank, and the computer will be able to calculate
and plot any type of phase diagram or any special
quantity of interest. In fact, the computer only needs
to calculate the various phase equilibria once,
whereupon the customer can ask to have the informa-
tion plotted in various ways using potential or molar
axes, sections or projections. If the customer knows
that he is only interested in a particular section, it
would, of course, save time to limit the calculation
to that section.

Even though it is most common to control tem-
perature and composition in experiments, there are
other possibilities. For instance, in carburization, one
may control the chemical potential of carbon, and,
in understanding the progress of carburization in an
alloyed steel, it may be most convenient to use the
carbon potential as one of the axes. In other cases,
one may control the heat flow out of the system, rather
than the temperature. It would then be convenient to
use the enthalpy, rather than temperature, as one of
the axes. Enthulpy has not been mentioned as one of
the possible variables in the definition of the state of
a system. However, it can always be evaluated from
the variables already discussed, and it can be used
to replace any variable which affects its value. There
are many thermodynamic quantities that could be
used, and it is possible to choose any such variable
when plotting a diagram after the calculation of the
various phase equilibria, because the choice of vari-
ables does not normally affect the nature of the equili-
bria. However, it should be emphasized that the proof,
given by equations (20) and (21), that one-phase ficlds
move apart when a molar quantity is introduced as
an axis instead of a potential, only holds for a pair
of conjugate variables. In addition to the pairs already
discussed (T/S,,, =P/ V,,, and u;/x;), one may define
new pairs by rearranging the fundamental equation
(1) to give

1
T
Thus, U, may be used as an axis instead of —1/T,
which is equivalent to 7. For any other substitution,

there is a slight chance of obtaining some overlap
between sets of two one-phase fields.

i « Fhi 2
—~dS =~ dU-—TdV—}-ZTdni Tdaf . (48)

PHASE DIAGRAMS FOR
CONSTRAINED EQUILIBRIA

In some cases, the experimental conditions are such
that the system does not attain the ordinary equili-
brium. So-called constrained equilibria fall in this
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a potential phase diagram; note overlap of two-phase fields; b as a, but with T replaced by its conjugate molar quantity S,,;
broken line represents notional equilibrium between « and B in adiabatic conditions

31 Phase diagram for system in constrained equilibrium (adiabatic conditions)

category. An example is diffusionless transformation
in alloys at low temperatures. Such a reaction requires
a special thermodynamic calculation, although it is
based on information in the data bank which is used
in the calculation of ordinary equilibria. As another,
more hypothetical, example, one might mention
adiabatic transformations, and this type will now be
discussed in some detail.

Suppose that a system is thermally insulated and
that all reactions inside the system must be adiabatic.
In this discussion, the practical difficulties in such an
experiment will be neglected, attention being directed
towards exploring the consequences of such condi-
tions. As before, the discussion will be limited to
reversible reactions; it is known from thermody-
namics that these will be insentropic under adiabatic
conditions. It is thus possible to consult an equilib-
rium phase diagram, such as Fig. 9b, and ask where
a and B would be found under the constrained
equilibrium conditions of equal entropy. This is prob-
ably somewhere close to the middle of the a+p
two-phase field, where both phases are metastable if
the constraints are relaxed. It is possible, by calcula-
tion, to find a line representing & and 8 in equilibrium
under such conditions, i.e. a linear two-phase field
(see Fig. 31b). Consider next how that two-phase
field would look in the —P-T phase diagram. Of
course, when @ and f3 are subject to the same pressure
and have the same entropy, they cannot have the
same temperature, and a two-phase field will appear
in the —P-T phase diagram. However, in this case,
there is no separation of the two one-phase fields;
they have moved in the other direction and now
overlap (see Fig. 31a). This demonstrates that the
fact that one-phase fields in a potential diagram separ-
ate and leave room for a two-phase field between
them when a conjugate molar quantity is introduced
is not trivial. Instead it is a characteristic of complete
equilibrium. All constrained equilibria result in over-
lapping one-phase fields in the potential phase
diagram.

SUMMARY

Various types of phase diagram have been discussed.
From a topological point of view, the diagrams with
potential axes are simplest. All the geometrical ele-
ments in such a diagram are phase fields, the
dimensionalities of which are given by the Gibbs
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phase rule. One can use projection or sectioning to
present a multidimensional phase diagram.

In a projected potential phase diagram, obtained
by projecting n times, phase fields with less than n-+2
phases may overlap, and it will be difficult to distin-
guish between them.

Each time a preceding section of a potential phase
diagram is sectioned, the variance of a phase field
decreases by one unit, until it becomes a point. On
the next sectioning, it will usually disappear.

Phase diagrams with only molar quantities as axes
have a relatively simple topology. All the phase fields
have variances that are numerically equal to the num-
ber of axes on the phase diagram, and all geometrical
elements of lower variance are boundaries between
phase fields. The numbers of phases in two phase
fields meeting at a boundary are related by the MPL
rule. At a boundary where four phase fields make
contact, the directions of adjoining boundaries are
governed by a generalized version of the
Schreinemakers rule.

Sections of molar phase diagrams are useful and
obey the MPL rule. The Schreinemakers rule is of
considerable value here, but is not strictly valid.

Phase diagrams with a mixture of potential and
molar axes are common. They may be difficult to
interpret, especially after sectioning, because it is not
always evident whether a particular geometrical ele-
ment is a phase field or just a boundary between
phase fields. The MPL rule holds if two conditions
are fulfilled: first, it can only be applied to two phase
fields separated by a boundary which is not a third
phase field; and second, it can be applied only if at
least one of the phase fields has a variance numerically
equal to the number of phase-diagram axes.

The ‘reaction scheme’ diagram of Scheil is a sim-
plified version of a projection of a potential phase
diagram.

Phase diagrams can also be constructed for condi-
tions of constrained equilibria. Potential phase
diagrams will show overlapping one-phase fields
under such conditions.
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