------------------------------------------------------------------------- ! this file is an annotated print file generated in sample.2. ! Comment lines begin with an exclamation point. ! The calculation is of a series of AFM diagrams (projection ! through feldspar KAlO2 component, not muscovite component KAl3O5 ! as in the classical Thompson projection, see sample.5) ! at 4kb from 600 to 1100 K using the thermodynamic data ! of Holland and Powell 1990 (file hp90ver.dat) ! The first portion of the output is basically an echo of the users ! input. ! In this problem the user has replaced the data base component K2O ! with KALO2 with the result that K2O has a negative mole fraction of ! AL2O3. Negative mole freactions are not permitted by vertex, which ! rejects the phase and warns you accordingly. ! **warning ver013** phase k2o has a negative composition and will be rejected **warning ver111** the following endmembers are missing for solution GrPyAl(B) gr it will be treated as a simpler solution between endmembers: py alm ! beginning of computational output: ----------------------------------------------------------------- summary for the 1st calculation follows: ----------------------------------------------------------------- problem title: test 2 thermodynamic data base from: HOLLAND AND POWELL 1989 fluid equation of state from: graphite buffered COH-MRK independently constrained potentials: P(bars) T(K) X(CO2) saturated phase components: H2O CO2 saturated or buffered components: SIO2 KALO2 components with unconstrained potentials: AL2O3 FEO MGO phases and (projected) composition with respect to FEO and MGO : ! These are reduced compositions, i.e., after projection through ! SIO2 and KALO2. mu 0.00 0.00 phl 0.00 1.00 ann 1.00 0.00 clin 0.00 0.83 daph 0.83 0.00 en 0.00 1.00 fs 1.00 0.00 py 0.00 0.75 alm 0.75 0.00 ap 0.00 1.00 fap 1.00 0.00 cumm 0.00 1.00 grun 1.00 0.00 crd 0.00 0.50 fcrd 0.50 0.00 mctd 0.00 0.50 fctd 0.50 0.00 mst 0.00 0.31 fst 0.31 0.00 ta 0.00 1.00 fta 1.00 0.00 br 0.00 1.00 pyhl 0.00 0.00 m(t&c) 0.00 1.00 sid 1.00 0.00 and 0.00 0.00 ky 0.00 0.00 sill 0.00 0.00 sp 0.00 0.50 herc 0.50 0.00 mcar 0.00 0.50 fcar 0.50 0.00 per 0.00 1.00 cor 0.00 0.00 ! for problems with solution phases vertex creates pseudocompounds with ! different compositions, unfortunately the names vertex uses are not ! very easy or logical to deal with. For this problem all the solutions ! are binary, in which case vertex designates each pseudocompound by ! the first two letters of the second endmember phase name, followed ! by fraction of that component in per cent, e.g., al90 signifies ! a garnet pseudocompound consisting of 90% almandine component and ! 10% pyrope component. To figure out what the rest of the pseudocompounds ! are you could look in the solution model file (after reading chapter 4 ! of the documentation). Note that if two solutions have endmembers which ! begin with the same two letters, the resulting names are ambiguous. ! this occurs here for the carpholite, chloritoid, and cordierite ! pseudocompounds, because all three Fe endmembers begin with "fc". ! This problem could easily be ! avoided by switching the positions of the endmembers in one of the model ! definitions in the solution model file (but i'm too lazy to redo all this ! so you are going to have to live with it). Alternatively you can tell ! which series of compounds represents cordierite by composition and reaction ! stoichiometry: ! these are chlorite compunds da90 0.76 0.08 da80 0.67 0.16 da70 0.59 0.24 da60 0.51 0.33 da50 0.42 0.41 da40 0.34 0.49 da30 0.26 0.58 da20 0.17 0.66 da10 0.09 0.74 ! these are biotite compounds ph89 0.10 0.90 ph79 0.20 0.79 ph69 0.31 0.69 ph59 0.41 0.59 ph49 0.51 0.49 ph39 0.60 0.40 ph29 0.70 0.30 ph19 0.81 0.20 ph 9 0.90 0.10 ! these are staurolite compounds fs99 0.30 0.00 fs89 0.27 0.03 fs79 0.24 0.06 fs69 0.22 0.09 fs60 0.19 0.12 fs50 0.16 0.15 fs40 0.13 0.18 fs31 0.10 0.21 fs21 0.07 0.24 fs11 0.04 0.27 fs2.0 0.01 0.30 ! these are carpholite (sp?) compounds fc99 0.49 0.01 fc89 0.45 0.05 fc79 0.40 0.10 fc69 0.35 0.15 fc60 0.30 0.20 fc50 0.25 0.25 fc40 0.20 0.30 fc31 0.16 0.34 fc21 0.11 0.39 fc11 0.06 0.44 fc2.0 0.01 0.49 ! these are cordierite compounds fc96 0.48 0.02 fc88 0.44 0.06 fc80 0.40 0.10 fc72 0.36 0.14 fc64 0.32 0.18 fc56 0.28 0.22 fc48 0.24 0.26 fc40 0.20 0.30 fc32 0.16 0.34 fc24 0.12 0.38 fc16 0.08 0.42 fc 8 0.04 0.46 ! these are cummingtonite compounds cu91 0.08 0.92 cu82 0.17 0.83 cu73 0.26 0.74 cu64 0.35 0.65 cu55 0.44 0.56 cu46 0.53 0.47 cu37 0.62 0.38 cu28 0.71 0.29 cu19 0.80 0.20 cu10 0.89 0.11 ! these are anthophyllite compounds ap88 0.12 0.88 ap79 0.21 0.79 ap70 0.30 0.70 ap61 0.39 0.61 ap52 0.48 0.52 ap43 0.57 0.43 ap34 0.66 0.34 ap25 0.75 0.25 ap16 0.84 0.16 ! these are enstatite compounds en86 0.14 0.86 en77 0.23 0.77 en68 0.32 0.68 en59 0.41 0.59 en50 0.50 0.50 en41 0.59 0.41 en32 0.68 0.32 en23 0.77 0.23 en14 0.86 0.14 ! these are talc compounds ft89 0.89 0.11 ft79 0.79 0.21 ft69 0.69 0.31 ft59 0.59 0.41 ft49 0.49 0.51 ft39 0.39 0.61 ft29 0.29 0.71 ft19 0.19 0.81 ft 9 0.09 0.91 ! these are spinel compounds sp89 0.05 0.45 sp79 0.10 0.40 sp69 0.15 0.35 sp59 0.20 0.30 sp49 0.25 0.25 sp39 0.30 0.20 sp29 0.35 0.15 sp19 0.40 0.10 sp 9 0.45 0.05 ! these are chloritoid compounds fc90 0.45 0.05 fc80 0.40 0.10 fc70 0.35 0.15 fc60 0.30 0.20 fc50 0.25 0.25 fc40 0.20 0.30 fc30 0.15 0.35 fc20 0.10 0.40 fc10 0.05 0.45 ! these are garnet compounds al90 0.68 0.08 al80 0.60 0.15 al70 0.52 0.23 al60 0.45 0.30 al50 0.38 0.38 al40 0.30 0.45 al30 0.23 0.52 al20 0.15 0.60 al10 0.08 0.67 phases on saturation and buffering surfaces: ! These are the phases whose stability is determined by component saturation ! constraints. They are in an order which corresponds to order in which ! the constraints are applied, e.g., first phases determined by the SIO2 ! constraint (Q,BQ), and then phases determined by the KALO2 constraint (kspar). sio2 q bq kf san excluded phases: al2o3 mgo feo cel fcel sdph east ames fame kals lc mgts c-en fo fa tats ftat chr dia m(h&p) coe Wus ----------------------------------------------------------------- ! This is the beginning of calculated results, which consists of lists ! of the stable pseudocompound assemblages at each condition specified ! by the user. ---------------------------------------------------------------- the stable assemblages at: P(bars) = 4000.00 T(K) = 600.000 X(CO2) = 0.122099E-03 are: ! after each assemblage an integer flag indicates the kind of ! phase relations represented: ! (1) indicates true invariant (e.g., 3-phase) assemblages ! (2) indicates high variance assemblages (e.g., 2-phase) ! (3) indicates one-phase assemblages ! (4) indicates immiscibility in one or more phases ! For information on how this is determined see Connolly and ! Kerrick 1987. ! In this first composition diagram all the pseudocompound ! assemblages represent one of two 2-phase assemblages, either ! muscovite+chlorite, or biotite+chlorite. mu -daph -da90 (2) daph -ann -da90 (2) mu -clin -da10 (2) clin -phl -ph89 (2) ann -ph 9 -da90 (2) ph 9 -ph19 -da80 (2) ph19 -ph29 -da70 (2) ph29 -ph39 -da60 (2) ph39 -ph49 -da50 (2) ph49 -ph59 -da40 (2) ph59 -ph69 -da30 (2) ph69 -ph79 -da20 (2) ph79 -ph89 -da10 (2) mu -da90 -da80 (2) mu -da10 -da20 (2) clin -da10 -ph89 (2) ph 9 -da90 -da80 (2) ph19 -da80 -da70 (2) ph29 -da70 -da60 (2) ph39 -da60 -da50 (2) ph49 -da50 -da40 (2) ph59 -da40 -da30 (2) ph69 -da30 -da20 (2) ph79 -da20 -da10 (2) mu -da80 -da70 (2) mu -da20 -da30 (2) da70 -da60 -mu (2) da60 -da50 -mu (2) da50 -da40 -mu (2) da40 -da30 -mu (2) these assemblages are compatible with the following phases or species determined by component saturation or buffering constraints: ! that is, all assemblages may coexist with both Q and Kf. q kf ** no immiscibility occurs in the stable solution phases ** ---------------------------------------------------------------- the stable assemblages at: P(bars) = 4000.00 T(K) = 700.000 X(CO2) = 0.132972E-02 are: mu -ann -ph 9 (2) mu -clin -da10 (2) clin -phl -ph89 (2) ph 9 -ph19 -mu (2) ph19 -ph29 -mu (2) ph29 -ph39 -mu (2) ph39 -ph49 -mu (2) ph49 -ph59 -mu (2) ph59 -ph69 -mu (2) ph69 -ph79 -mu (2) ph79 -ph89 -da10 (2) mu -da10 -ph79 (1) clin -da10 -ph89 (2) these assemblages are compatible with the following phases or species determined by component saturation or buffering constraints: q kf ** no immiscibility occurs in the stable solution phases ** ---------------------------------------------------------------- the stable assemblages at: P(bars) = 4000.00 T(K) = 800.000 X(CO2) = 0.875039E-02 are: mu -ann -ph 9 (2) mu -phl -ph89 (2) ph 9 -ph19 -mu (2) ph19 -ph29 -mu (2) ph29 -ph39 -mu (2) ph39 -ph49 -mu (2) ph49 -ph59 -mu (2) ph59 -ph69 -mu (2) ph69 -ph79 -mu (2) ph79 -ph89 -mu (2) these assemblages are compatible with the following phases or species determined by component saturation or buffering constraints: q kf ** no immiscibility occurs in the stable solution phases ** ---------------------------------------------------------------- the stable assemblages at: P(bars) = 4000.00 T(K) = 920.000 X(CO2) = 0.855232E-01 are: mu -alm -al90 (2) alm -ann -ph 9 (2) mu -crd -ph89 (1) crd -phl -ph89 (2) ph 9 -ph19 -alm (2) ph19 -ph29 -al90 (2) ph29 -ph39 -al90 (2) ph39 -ph49 -mu (2) ph49 -ph59 -mu (2) ph59 -ph69 -mu (2) ph69 -ph79 -mu (2) ph79 -ph89 -mu (2) mu -al90 -ph39 (1) alm -al90 -ph19 (2) these assemblages are compatible with the following phases or species determined by component saturation or buffering constraints: q kf ** no immiscibility occurs in the stable solution phases ** ---------------------------------------------------------------- the stable assemblages at: P(bars) = 4000.00 T(K) = 1000.00 X(CO2) = 0.176963 are: sill -alm -al90 (2) alm -fap -ap16 (2) sill -crd -fc 8 (2) crd -cumm -cu91 (2) ap16 -ap25 -al90 (2) ap25 -cu28 -al90 (1) cu28 -cu37 -al90 (2) cu37 -cu46 -al90 (2) cu46 -cu55 -fc40 (2) cu55 -cu64 -fc32 (2) cu64 -cu73 -fc24 (2) cu73 -cu82 -fc16 (2) cu82 -cu91 -fc 8 (2) sill -al90 -fc48 (1) alm -al90 -ap16 (2) sill -fc 8 -fc16 (2) crd -fc 8 -cu91 (2) cu46 -al90 -al80 (2) cu46 -fc40 -al80 (1) cu55 -fc40 -fc32 (2) cu64 -fc32 -fc24 (2) cu73 -fc24 -fc16 (2) cu82 -fc16 -fc 8 (2) sill -fc48 -fc40 (2) al90 -fc48 -al80 (2) sill -fc16 -fc24 (2) fc40 -al80 -fc48 (2) fc40 -fc32 -sill (2) fc32 -fc24 -sill (2) these assemblages are compatible with the following phases or species determined by component saturation or buffering constraints: bq san ** no immiscibility occurs in the stable solution phases ** ---------------------------------------------------------------- the stable assemblages at: P(bars) = 4000.00 T(K) = 1100.00 X(CO2) = 0.495322E-02 are: sill -alm -sp 9 (1) alm -fs -en14 (2) sill -crd -fc 8 (2) crd -en -en86 (2) en14 -en23 -al90 (2) en23 -en32 -al90 (2) en32 -en41 -al80 (2) en41 -en50 -fc32 (2) en50 -en59 -fc24 (2) en59 -en68 -fc24 (2) en68 -en77 -fc16 (2) en77 -en86 -fc 8 (2) sill -sp 9 -fc56 (1) alm -sp 9 -al90 (2) alm -en14 -al90 (2) sill -fc 8 -fc16 (2) crd -fc 8 -en86 (2) en32 -al90 -al80 (2) en41 -al80 -fc40 (1) en41 -fc32 -fc40 (2) en50 -fc32 -fc24 (2) en68 -fc24 -fc16 (2) en77 -fc16 -fc 8 (2) sill -fc56 -fc48 (2) sp 9 -fc56 -al90 (1) sill -fc16 -fc24 (2) al90 -al80 -fc48 (2) al80 -fc40 -fc48 (2) fc32 -fc40 -sill (2) fc32 -fc24 -sill (2) sill -fc48 -fc40 (2) fc56 -fc48 -al90 (2) these assemblages are compatible with the following phases or species determined by component saturation or buffering constraints: bq san ** no immiscibility occurs in the stable solution phases **