719 DO NOT DELETE THIS LINE | Solution models consistent with: | Stixrude, L. and Lithgow-Bertelloni, C. (2024) | The models are to be used with the Perple_X thermodynamic data file stx24ver.dat. Refer to | the header of that file for additional implementation notes. JADC, 9/11/24 | The solution model names used here are: | O | Pl | Sp | Cpx | Wad | Ring | Pv | Wus | C2/c | Opx | Aki | Ppv | CF | Gt | NaAl | These are not necessarily identical to the names used in STX24. -------------------------------------------------------- begin_model C2/c C2/c pyroxene solution, aka HP-Cpx or C2c JADC, 9/4/2024. C2/c 688 | model type: generic 1 | number of polytopes 1 | number of simplices 2 | number of vertices on each simplex mgc2 fec2 0. 1. .1 0 ideal 1 1 site entropy model M 2 2 2 2 species, site multiplicity = 2. z(Mg,M) = 1 mgc2 z(Fe,M) = 1 fec2 [Si2O6] | formula suffix, enter "none" for no suffix. end_of_model C2/c | -------------------------------------------------------- begin_model Wus Wuestite solution. aka ferropericlase (FP) From HeFESTO output it seems STX24 actually uses the 2 site model: M1 M2 _____________ Mutliplicity 2 2 _____________ 1 pe Mg Mg Species: 2 wu Fe Fe 3 wuls Fe Fe 4 mag VFe Fe 5 anao Na Al this is stoichiometrically inconsistent for mag composition but will yield S/R = 2 ln 2 for 50/50 wu-mag JADC, 9/4/2024. mag/Wuestite and smag/Spinel are degenerate in SLB 24, to prevent mag/Wuestite from being computed as the stable phase in close proximity to the Fe3O4 composition the mag endmember has been destabilized relative to smag by 100 J/mol. JADC, 9/11/24 Wus 688 | model type: implicit O/D, screwy 1 | number of polytopes 1 | number of simplices 5 | number of vertices on each simplex pe wu wuls anao mag 0. 1. .1 0 | range and resolution for X(pe) 0. 1. .1 0 | range and resolution for X(wu) 0. 1. .1 0 | range and resolution for X(wuls) 0. 1. .1 0 | range and resolution for X(anao) begin_excess_function W(pe wu) 44d3 + 0.044 * P_bar W(pe wuls) -87.12047d3 W(pe anao) 120d3 W(pe mag) 302.7452d3 W(wu wuls) -60.21909d3 W(wu anao) 120d3 W(wu mag) 106.1549d3 W(wuls anao) 120d3 W(wuls mag) 106.15149d3 W(anao mag) 120d3 end_excess_function 2 | 2 site entropy pseudo-model M1 | site name 4 2 2 | 4 species on M1, 4 site per formula unit. z(Mg,M1) = 1 pe z(Fe,M1) = 1 wu + 1 wuls z(VFe,M1) = 1 mag z(Na,M1) = 1 anao M2 | site name 3 2 2 | 4 species on M1, 4 site per formula unit. z(Mg,M2) = 1 pe z(Fe,M2) = 1 wu + 1 wuls + 1 mag z(Al,M2) = 1 anao [O4] | formula suffix, enter "none" for no suffix. begin_van_laar_sizes alpha(pe) 1 alpha(wu) 1 alpha(wuls) 1 alpha(anao) 1 alpha(mag) 0.08293 end_van_laar_sizes begin_dqf_corrections DQF(mag) = 20 end_dqf_corrections end_of_model Wus | -------------------------------------------------------- begin_model Sp Spinel solution, aka Magnetite A B _____________ Mutliplicity 1 2 _____________ 1 sp Mg Al Species: 2 hc Fe Al 3 smag Fe Fe 4 picr Mg Cr smag is identical to mag used in Wus JADC, 9/4/2024. to prevent mag/Wuestite from being computed as the stable phase in close proximity to the Fe3O4 composition the mag endmember has been destabilized by 100 J/mol. JADC, 9/11/24 Sp 688 | model type: generic, normal spinel 1 | number of polytopes 1 | number of simplices 4 | number of vertices on each simplex sp hc smag picr 0. 1. .1 0 | range and resolution for X(sp) 0. 1. .1 0 | range and resolution for X(hc) 0. 1. .1 0 | range and resolution for X(picr) begin_excess_function W(sp hc) -1.3109d3 W(sp smag) 63d3 W(sp picr) 20.99394d3 W(hc smag) 55d3 W(hc picr) 21d3 W(smag picr) 42d3 end_excess_function 2 | 2 site entropy pseudo-model A | site name 2 1 1 | 2 species on A, 1 site per formula unit. z(Mg,A) = 1 sp + 1 picr z(Fe,A) = 1 hc + 1 smag B | site name 3 2 2 | 3 species on B, 4 site per formula unit. z(Fe,B) = 1 smag z(Al,B) = 1 sp + 1 hc z(Cr,B) = 1 picr [O4] | formula suffix, enter "none" for no suffix. end_of_model Sp | -------------------------------------------------------- begin_model Pv Perovskite solution, AKA Bridgemanite JADC, 9/4/2024. Pv 688 | model type: generic, normal spinel 1 | number of polytopes 1 | number of simplices 7 | number of vertices on each simplex mgpv fepv alpv hepv hlpv fapv crpv 0. 1. .1 0 | range and resolution for X(mgpv) 0. 1. .1 0 | range and resolution for X(fepv) 0. 1. .1 0 | range and resolution for X(alpv) 0. 1. .1 0 | range and resolution for X(hepv) 0. 1. .1 0 | range and resolution for X(hlpv) 0. 1. .1 0 | range and resolution for X(fapv) begin_excess_function W(mgpv fepv) -12.46739d3 W(mgpv alpv) 31.66295d3 W(mgpv hepv) 93.86753d3 W(mgpv hlpv) 49.85996d3 W(mgpv crpv) 93.18402d3 W(fepv hepv) 93.86753d3 W(fepv hlpv) 49.85996d3 W(fepv crpv) 93.18402d3 W(alpv hepv) 65d3 W(alpv hlpv) 65d3 W(alpv fapv) 65d3 W(alpv crpv) 4d4 W(hepv hlpv) -5.8751d3 W(hepv fapv) 65d3 W(hepv crpv) 4d4 W(hlpv fapv) 65d3 W(hlpv crpv) 4d4 W(fapv crpv) 4d4 end_excess_function 2 | 2 site entropy model M 4 1 1 | 4 species on M site multiplicity = 1 z(mg,M) = 1 mgpv z(fe,M) = 1 fepv + 1 hepv + 1 hlpv + 1 fapv z(al,M) = 1 alpv z(cr,M) = 1 crpv T 4 1 1 | 4 species on T site multiplicity = 1. z(si,T) = 1 mgpv + 1 fepv z(al,T) = 1 alpv + 1 fapv z(fe,T) = 1 hepv + 1 hlpv z(cr,T ) = 1 crpv [O3] | formula suffix, enter "none" for no suffix end_of_model Pv -------------------------------------------------------- begin_model Pl Plagioclase, STX24 endmembers have no configurational entropy implying a molecular configurational entropy model. JADC, 9/4/2024. Pl 688 | model type: 688 format standard model 1 | number of polytopes 1 | number of simplices 2 | number of vertices (endmembers) on each simplex ab an 0. 1. .1 0 | imod = 0 -> cartesian subdivision begin_excess_function w(an ab) 13d3 end_excess_function 1 | 1 site molecular model: M 2 1 1 z(Ab,M) = 1 ab z(An,M) = 1 an none | formula suffix, enter "none" for no suffix end_of_model Pl -------------------------------------------------------- begin_model O Olivine solution JADC, 9/4/2024. O 688 | model type: generic 1 | number of polytopes 1 | number of simplices 2 | number of vertices (endmembers) on each simplex fo fa 0 1 .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(fo fa) 2.47406d3 end_excess_function 1 | 1 site entropy model M 2 2 2 | 2 species, site multiplicity = 2. z(Mg,M) = 1 fo z(Fe,M) = 1 fa [Si2O4] | formula suffix, enter "none" for no suffix. end_of_model O -------------------------------------------------------- begin_model Wad Wadsleysite solution JADC, 9/4/2024. Wad 688 | model type: generic 1 | number of polytopes 1 | number of simplices 2 | number of vertices (endmembers) on each simplex mgwa fewa 0 1 .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(mgwa fewa) 12.86875d3 end_excess_function 1 | 1 site entropy model M 2 2 2 | 2 species, site multiplicity = 2. z(Mg,M) = 1 mgwa z(Fe,M) = 1 fewa [Si2O4] | formula suffix, enter "none" for no suffix. end_of_model Wad -------------------------------------------------------- begin_model Ring Ringwoodite solution JADC, 9/4/2024. Ring 688 | model type: generic 1 | number of polytopes 1 | number of simplices 2 | number of vertices (endmembers) on each simplex mgri feri 0 1 .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(mgri feri) 6.22927d3 end_excess_function 1 | 1 site entropy model M 2 2 2 | 2 species, site multiplicity = 2. z(Mg,M) = 1 mgri z(Fe,M) = 1 feri [Si2O4] | formula suffix, enter "none" for no suffix. end_of_model Ring -------------------------------------------------------- begin_model Opx Orthopyroxene solution JADC, 9/4/2024. Opx 688 | model type: generic 1 | number of polytopes 1 | number of simplices 4 | number of vertices on each simplex odi en fs mgts 0. 1. .1 0 | range and resolution for X(odi) 0. 1. .1 0 | range and resolution for X(en) 0. 1. .1 0 | range and resolution for X(fs) begin_excess_function W(en odi) 32.21303d3 W(fs odi) 32.21303d3 W(mgts odi) 46.64038d3 end_excess_function 2 | 2 site entropy model M1 3 1 1 | 3 species, M1 site multiplicity = 1. z(Ca,M1) = 1 odi z(Fe,M1) = 1 fs z(Mg,M1) = 1 en + 1 mgts M2 3 1 1 | 3 species, M2 site multiplicity = 1. z(Al,M2) = 1 mgts z(Fe,M2) = 1 fs z(Mg,M2) = 1 odi + 1 en [(Si,Al)O6] | formula suffix, enter "none" for no suffix. end_of_model Opx -------------------------------------------------------- begin_model Cpx Clinopyroxene solution JADC, 9/4/2024. Cpx 688 | model type: generic 1 | number of polytopes 1 | number of simplices 6 | number of vertices on each simplex di he cen cats jd acm 0. 1. .1 0 | range and resolution for X(di) 0. 1. .1 0 | range and resolution for X(he) 0. 1. .1 0 | range and resolution for X(cen) 0. 1. .1 0 | range and resolution for X(cats) 0. 1. .1 0 | range and resolution for X(jd) begin_excess_function W(di cen) 24.74d3 W(di cats) 26.0d3 W(di jd) 24.3d3 W(di acm) 24.3d3 W(he cen) 24.74d3 W(he cats) 26d3 W(he jd) 24.3d3 W(he acm) 24.3d3 W(cen cats) 63.71812d3 W(cen jd) 46.03709d3 W(cen acm) 46.03709d3 W(cats jd) 10d3 W(cats acm) 10d3 end_excess_function 3 | 3 site entropy model M1 3 1 1 | 3 species, M1 site multiplicity = 1. z(Mg,M1) = 1 cen z(Ca,M1) = 1 di + 1 he + 1 cats z(Na,M1) = 1 jd + 1 acm M2 3 1 1 | 3 species, M2 site multiplicity = 1. z(Fe,M2) = 1 he + 1 acm z(Al,M2) = 1 jd + 1 cats z(Mg,M2) = 1 cen + 1 di T 2 2 2 | 2 species, T site, multiplicity 2 z(Al,T) = 1/2 cats + 1 di + 1 he + 1 cen + 1 jd + 1 acm z(Si,T) = 1/2 cats [O6] | formula suffix, enter "none" for no suffix. begin_van_laar_sizes alpha(jd) 1 alpha(di) 1 alpha(he) 1 alpha(cen) 1 alpha(cats) 3.5 alpha(acm) 1 end_van_laar_sizes end_of_model Cpx -------------------------------------------------------- begin_model Aki Akimotoite solution, aka Ilmenite JADC, 9/4/2024. Aki 688 | model type: generic 1 | number of polytopes 1 | number of simplices 5 | number of vertices on each simplex mgil feil co hem esk 0 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0 1 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0 1 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(mgil co) 62.48740d3 W(mgil hem) 65d3 W(mgil esk) 93.18402d3 W(feil co) 62.48740d3 W(feil hem) 65d3 W(feil esk) 93.18402d3 W(co hem) 65d3 W(co esk) 40d3 W(hem esk) 40d3 end_excess_function 2 2 site entropy model M 4 1 1 3 species on M site multiplicity = 1. z(Mg,M) = 1 mgil z(Fe,M) = 1 feil + 1 hem z(Al,M) = 1 co z(Cr,M) = 1 esk T 4 1 1 2 species on T site multiplicity = 1. z(Si,T) = 1 mgil + 1 feil z(Al,T) = 1 co z(Fe,T) = 1 hem z(Cr,T) = 1 esk [O3] | formula suffix, enter "none" for no suffix. begin_van_laar_sizes alpha(mgil) 1 alpha(feil) 1 alpha(co) 1 alpha(hem) 1.3 alpha(esk) 1 end_van_laar_sizes end_of_model Aki -------------------------------------------------------- begin_model Garnet solution with Fe-majorite (Fe3MgSiSi3O12) and Ca-majorite (Ca3MgSiSi3O12), the use of these endmembers appear to be necessary to reproduce the Stixrude & Lithgow-Bertelloni (2011) calculations. reformulated as an irregular prismatic model, JADC, 5/18 reformulated as 688 standard format. JADC, 10/19 updated for STX24. JADC, 9/5/2024. A B1/B2 ____________________ Multiplicity 3 2 ____________________ prismatic vertex: py Mg AlAl independent al Fe AlAl independent gr Ca AlAl independent mgmj Mg MgSi independent fmaj Fe MgSi dependent cmaj Ca MgSi dependent knor Mg CrCr independent fmaj Fe CrCr dependent cmaj Ca CrCr dependent mand Mg FeFe dependent fand Fe FeFe dependent andr Ca FeFe independent orphan vertex: namj Na2Mg SiSi independent (orphan) Gt 688 | model type: 688 format standard model 2 | number of polytopes | polytope names and composite composition space subdivision schemes [namj] 0 1 .1 0 | subdivision range for X(1) = M-free [~namj] by difference | = [M][Al,MgSi], M = Mg,Fe,Ca | ---------------------------- | Polytope 1 - 1 simplex 1 | number of simplices, [Na2/3Al1/3][AlSi] 1 | number of vertices on each simplex namj | endmembers on the vertices | ---------------------------- | Polytope 2 - 3x4 simplices 2 | number of simplices 3 4 | number of vertices on each simplex | endmembers on the vertices cmaj fmaj mgmj gr al py ckno fkno knor andr fand mand | First 3-simplex X_Ca,A 0. 1. .1 0 | range and resolution for X(Ca,A), imod = 0 -> cartesian subdivision X_Fe,A 0. 1. .1 0 | range and resolution for X(Fe,A), imod = 0 -> cartesian subdivision X_Mg,A by difference | Second 4-simplex X_MgSi,B 0. 1. .1 0 | range and resolution for X(1-Ts,B), imod = 0 -> cartesian subdivision X_AlAl,B 0. 1. .1 0 | range and resolution for X(Al,B), imod = 0 -> cartesian subdivision X_FeFe,B 0. 1. .1 0 | range and resolution for X(Fe,B), imod = 0 -> cartesian subdivision X_CrCr,B by difference begin_dependent_endmembers fmaj = 1 mgmj + 1 al - 1 py cmaj = 1 mgmj + 1 gr - 1 py fkno = 1 knor + 1 al - 1 py ckno = 1 knor + 1 gr - 1 py mand = 1 andr + 1 py - 1 gr fand = 1 andr + 1 al - 1 gr end_dependent_endmembers begin_excess_function W(py gr) 19.08857d3 W(py mgmj) 23.16432d3 W(py namj) 23.16432d3 W(py andr) 53d3 W(al mgmj) 23.16432d3 W(al namj) 23.16432d3 W(al andr) 44d3 W(al knor) 1d4 W(gr mgmj) 64.68245d3 W(gr namj) 64.68245d3 W(gr knor) -2d4 W(mgmj namj) 71.17245d3 W(mgmj andr) 64.68245d3 W(mgmj knor) 25.87913d3 W(namj andr) 64.68245d3 W(namj knor) 25.87913d3 W(andr knor) 75d3 end_excess_function 3 | 3 site configurational entropy model A | site name 4 3 3 | number of species, effective multiplicity, true multiplicity z(Ca,A) = 1 gr + 1 andr z(Fe,A) = 1 al z(Na,A) = 2/3 namj z(Mg,A) = 1 py + 1 mgmj + 1/3 namj + 1 knor B1 | site name 5 1 1 | number of species, effective multiplicity, true multiplicity z(Mg,B1) = 1 mgmj z(Al,B1) = 1 gr + 1 py + 1 al z(Si,B1) = 1 namj z(Cr,B1) = 1 knor z(Fe,B1) = 1 andr B2 | site name 4 1 1 | number of species, effective multiplicity, true multiplicity z(Si,B2) = 1 mgmj + 1 namj z(Al,B2) = 1 gr + 1 py + 1 al z(Cr,B2) = 1 knor z(Fe,B2) = 1 andr [Si3O12] | formula suffix, enter "none" for no suffix. end_of_model -------------------------------------------------------- begin_model Ppv Post-perovskite solution JADC, 9/4/2024. Ppv 688 | model type: generic 1 | number of polytopes 1 | number of simplices 5 | number of vertices on each simplex mppv fppv appv hppv cppv 0 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0 1 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0 1 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(mppv fppv) -39.83177d3 W(mppv appv) 31.66295d3 W(mppv hppv) 93.86753d3 W(mppv cppv) 93.18402d3 W(fppv appv) 31.66295d3 W(fppv hppv) 93.86753d3 W(fppv cppv) 93.18402d3 W(appv hppv) 65d3 W(appv cppv) 40d3 W(hppv cppv) 40d3 end_excess_function 2 2 site entropy model M 4 1 1 3 species on M site multiplicity = 1. z(mg,M) = 1 mppv z(fe,M) = 1 fppv + 1 hppv z(al,M) = 1 appv z(cr,M) = 1 cppv T 4 1 1 4 species on T site multiplicity = 1. z(si) = 1 mppv + 1 fppv z(al) = 1 appv z(fe) = 1 hppv z(cr) = 1 cppv [O3] | formula suffix, enter "none" for no suffix. end_of_model Ppv -------------------------------------------------------- begin_model CF Ca-Ferrite solution. JADC, 9/4/2024. CF 688 | model type: generic 1 | number of polytopes 1 | number of simplices 5 | number of vertices on each simplex mgcf fecf nacf hmag crcf 0 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0 1 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0 1 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(mgcf nacf) 67.19452d3 W(fecf nacf) 67.19452d3 W(nacf crcf) 67.19452d3 end_excess_function 3 number of sites for the entropy model A 3 1 1 3 species, A site multiplicity = 1. z(Fe,A) = 1 fecf + 1 hmag z(Mg,A) = 1 mgcf + 1 crcf z(Na,A) = 1 nacf T1 3 1 1 z(Fe,T1) = 1 hmag z(Al,T1) = 1 mgcf + 1 fecf + 1 nacf z(Cr,T1) = 1 crcf T2 4 1 1 z(Si,T2) = 1 nacf z(Fe,T2) = 1 hmag z(Al,T2) = 1 mgcf + 1 fecf z(Cr,T2) = 1 crcf [O4] | formula suffix, enter "none" for no suffix. begin_van_laar_sizes alpha(mgcf) 1 alpha(fecf) 1 alpha(nacf) 3.97647 alpha(hmag) 1 alpha(crcf) 1 end_van_laar_sizes end_of_model -------------------------------------------------------- begin_model NaAl Na-Al phase solution. JADC, 9/4/2024. A B C 1 2 6 mnal Na Mg Al5Si1 fnal Na Fe Al5Si1 nnal Na Na Al3Si3 NaAl 688 | model type: 688 format standard model 1 | number of polytopes 1 | number of simplices, [Na2/3Al1/3][AlSi] 3 | number of vertices on each simplex fnal | endmembers on the vertices mnal nnal 0. 1. .1 0 | range and resolution for X(fnal), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(mnal), imod = 0 -> cartesian subdivision begin_excess_function w(mnal nnal) -62.08292d3 w(fnal nnal) -62.08292d3 end_excess_function 2 | number of sites in configurational entropy model B | site name 3 2 2 | number of species, effective multiplicity, true multiplicity z(Na,B) = 1 nnal z(Mg,B) = 1 mnal z(Fe,B) = 1 fnal C | site name 2 6 6 | number of species, effective multiplicity, true multiplicity z(Al,C) = 5/6 mnal + 5/6 fnal + 1/2 nnal z(Si,C) = 1/6 mnal + 1/6 fnal + 1/2 nnal [NaO12] | formula suffix, enter "none" for no suffix. end_of_model