This page
provides a brief description of, and references for, the solution models
implemented in Perple_X
solution model files (e.g., solution_model.dat).
The page is intended to aid users in selecting suitable solution models. The
sources for the models indicated here (References, see
also
Perple_X endmember abbreviations and formulae may vary between thermodynamic data files, refer to thermodynamic_data_files for additional information.
January 19,
2010.
Unless indicated otherwise, the
compositional variables v, w, x, y, and z vary between zero and unity and are determined in Perple_X as
a function of computational variables by free-energy minimization.
Symbol |
Solution |
Formula |
Notes |
Source |
AbFsp(C1) |
feldspar |
KyNaxCa1xyAl2xySi2+x+yO8,
x+y≤1 |
C1 structural state. x>2/3, 1xy<~1/10.
See warnings in solution model file. |
[28] |
Aki(fab) |
akimotoite |
MgxFe1xyAl2ySi1yO3,
x+y≤1 |
Estimated regular parameter from source. Ilmenite structure. Use with sfo05ver.dat [33,43]. |
[17] |
Aki(stx7) |
akimotoite |
MgxFe1xyAl2ySi1yO3,
x+y≤1 |
Ilmenite structure. Use with stx07ver.dat [44]. |
[44] |
Aki(stx8) |
akimotoite |
MgxFe1xyAl2ySi1yO3,
x+y≤1 |
Ilmenite structure. Use with stx08ver.dat [54]. |
[54] |
Amph(DHP) |
clinoamphibole |
|
Superceded by Amph(DPW) |
[11] |
Amph(DPW) |
clinoamphibole |
|
Superceded by cAmph(DP). |
[12] |
Anth |
anthophyllite |
Mg7xFe7(1x)Si8O22(OH)2 |
Ideal, does not extrapolate well to high
pressure (P>3GPa). |
|
A-phase |
phase A |
Mg7xFe7(1x)Si2O8(OH)6 |
Ideal. |
|
Atg |
antigorite |
Mg48xFe48(1x)Si34O85(OH)62
|
Ideal. |
|
B |
brucite |
MgxFe1x(OH)2
|
Ideal. |
|
Bio(HP) |
biotite |
K[MgxFeyMn1xy]3wAl1+2wSi3wO10(OH)2,
x+y≤1 |
Speciation model, new parameters from
THERMOCALC, extended to cover Mn-solution. |
[41] |
Bio(TCC) |
biotite |
K[MgxFeyMn1xy]3uvwFe3+wTiuAl1+vSi3vO10(OH)2-2u,
x+y≤1, u+v+w≤1 |
Ti-oxy and Fe3+-Tschermaks
exchanges. |
[45] |
C2/c(stx) |
C2/c pyroxene |
[MgxFe1x]4Si4O12 |
Use with sfo05ver.dat [33, 43] and
stx07ver.dat [44]. |
[43] |
C2/c(stx8) |
C2/c pyroxene |
[MgxFe1x]4Si4O12 |
Use with stx08ver.dat [54]. |
[54] |
cAmph(DP) |
clinoamphibole |
Ca2(y+u+v)Nau+2(w+z)[MgxFe1x]73u2v4(w+z)Fe3+2zAl4y+3v+2wSi8(y+v)O22(OH)2,
u+v+w+y+z≤1 |
Costly speciation model, see commentary in
solut_09.dat. |
[14] |
casmelt |
melt |
CaO-Al2O3-SiO2
melt |
Dubious. |
[6] |
Cc(AE) |
calcite |
Ca1xMgxCO3 |
Entropy model should be checked against
source. |
[2] |
CF(stx8) |
calcium ferrite |
NaxMgyFe1xyAl2-xSixO4,
x+y≤1 |
Use with stx08ver.dat [54]. |
[54] |
Chl(HP) |
chlorite |
[MgxFewMn1xw]5y+zAl2(1+yz)Si3y+zO10(OH)8,
x+w≤1 |
Speciation model. Under most circumstances afchl endmember can be excluded
to save computational resources. |
[29] |
chum |
clinohumite |
Ti-F-OH-Mg-clinohumite. |
Model should be checked against source. |
[15] |
Chum |
clinohumite |
Mg9xFe9(1x)Si4O16(OH)2
|
Ideal. |
|
Clint |
clintonite |
CaMg3xAl2+2xSi2xO10(OH)2 |
Ideal. |
|
Cpx(h) |
clinopyroxene |
Na1yCay+z[MgxFe1x]yzAl1-y+zSi2+zO6,
y+z≤1 |
High structural state, entropy model should
be verified against sources. Stability seems excessive. |
[21,22] |
Cpx(HP) |
clinopyroxene |
Na1yCayMgxyFe(1x)yAlySi2O6 |
Disordered, new parameters from THERMOCALC,
extended to cover Acmite, CaTs,
and Cr-solution |
[26] |
Cpx(l) |
clinopyroxene |
Na1yCay+z[MgxFe1x]yzAl1-y+zSi2+zO6,
y+z≤1 |
Low structural state, entropy model should
be verified against sources. Stability seems reasonable. |
[21,22] |
Cpx(stx) |
clinopyroxene |
Ca2yMg42x2yFe2xSi4O12 |
Use with sfo05ver.dat [33,43]. |
[43] |
Cpx(stx7) |
clinopyroxene |
Ca2yMg42x2yFe2xSi4O12 |
Use with stx07ver.dat [44]. |
[44] |
Cpx(stx8) |
clinopyroxene |
[Ca1xyNaxMgy]2[FewMgy+zAl1wxyz]2Si4O12,
w+x+y+z≤1 |
Use with stx08ver.dat [54]. |
[54] |
Ctd(HP) |
chloritoid |
MgxFeyMn1xyAl2SiO5(OH)2,
x+y≤1 |
|
[52] |
Cumm |
cummingtonite |
Mg7xFe7(1x)Si8O22(OH)2 |
Ideal. |
|
Do(AE) |
dolomite |
CaMgxFe1x(CO3)2 |
Entropy model should be checked against
source. |
[2] |
Do(HP) |
dolomite |
CaMgxFe1x(CO3)2 |
|
[30] |
Ep(HP) |
epidote |
Ca2Al32xFe2xSi3O12OH |
Speciation model, parameters from
THERMOCALC. |
|
F |
fluid |
(H2O)x(CO2)1x |
Can be used with any Perple_X internal fluid EoS
that allows XCO2 as an independent variable. |
[10] |
F(salt) |
fluid |
(H2O)x(CO2)y(NaCl)1xy |
Choose fluid EoS
#5 (CORK) to use this model! VERTEX will
automatically computer activities from the Hafner
et al. H2O-CO2-NaCl EoS. |
[3] |
feldspar |
feldspar |
KyNaxCa1xyAl2xySi2+x+yO8,
x+y≤1 |
High structural state. |
[19] |
Fphl |
phlogopite |
KMg3AlSi3O10(OH)2(1x)Fx |
Ideal. |
|
Fsp(C1) |
feldspar |
KyNaxCa1xyAl2xySi2+x+yO8,
x+y≤1 |
C1 structural state. See warnings in
solution model file. |
[28] |
GaHcSp |
spinel |
MgxFeyZn1xyAl2O3,
x+y≤1 |
Normal spinel,
data from Jiri Konopasek. |
[36] |
GCOHF |
fluid |
H2xO1x |
Can be used with any Perple_X internal fluid EoS
that allows XO as an independent variable. |
[9] |
Gl |
glaucophane |
Na2Mg3xFe3(1x)Al2Si8O22(OH)2 |
Ideal. GlTrTsPg
model should be preferable. |
|
GlTrTs |
clinoamphibole |
Ca22wNa2w[MgxFe1x]3+2yAl33ywSi7+w+yO22(OH)2,
w+y≤1 |
Can be used in preference to GlTrTsPg to save computational resources for non-pargasitic (high P) clinoamphibole. |
[48,50] |
GlTrTsPg |
clinoamphibole |
Ca22wNaz+2w[MgxFe1x]3+2y+zAl33ywSi7+w+yO22(OH)2,
w+y+z≤1 |
Preferable for calculations over a large
pressure range. See also GlTrTs and TrTsPg(HP). |
[48,50] |
GrAd |
garnet |
Ca3Fe3+2(1x)Al2xSi3O12 |
Ideal. |
|
GrAd(EWHP) |
garnet |
[FexCayMg1xy]3[Fe1wAlw]2Si3O12
x+y ≤1 |
Verify in original reference that Ws are
for ionic model. |
[16] |
GrPyAlSp(B) |
garnet |
Fe3xCa3yMg3zMn3(1xyz)Al2Si3O12,
x+y+z≤1 |
|
[5] |
GrPyAlSp(G) |
garnet |
Fe3xCa3yMg3zMn3(1xyz)Al2Si3O12,
x+y+z≤1 |
Check against published version. |
[20] |
Gt(HP) |
garnet |
Fe3xCa3yMg3zMn3(1xyz)Al2Si3O12,
x+y+z≤1 |
|
[30] |
Gt(stx) |
garnet |
[FexCayMg(1-x+y+z/3)]3Al22zSi3+zO12,
x+y≤1 |
Limited majoritic
substitution. Use with sfo05ver.dat [33,43] and stx07ver.dat [44]. |
[43] |
Gt(stx8) |
garnet |
[(Na1/3Al2/3)wFexCayMg1-w-x-y]3[MgzAl1-z-wSiw+z]2Si2O12,
w+x+y+z≤1 |
Use with stx08ver.dat [54]. |
[54] |
Gt(WPH) |
garnet |
[FexCayMgzMn1xyz]3[Fe1wAlw]2Si3O12
x+y+z≤1 |
Parameters change with the wind. |
[52] |
hCrd |
cordierite |
Mg2xFe2yMn2(1xy)Al4Si5O18(H2O)z, x+y≤1 |
Ideal |
|
IlGkPy |
ilmenite |
MgxMnyFe1xyTiO3,
x+y≤1 |
Ideal. |
|
IlHm(A) |
ilmenite |
Fe2xTixO3 |
ilmenite coexisiting with
magnetite, its performance at T~1473 K criticized by Ghiorso,
but this probably the best model for T<1073 K. Gives solvus
critical T~973 K,
x~1/2.
|
[1] |
Kf |
alkali
feldspar |
NaxK1xAlSi3O8 |
Waldbaum & Thompson mixing model for sanidine combined with low structural state endmembers. |
[47] |
KN-Phen |
mica |
KxNa1xMgyFezAl32(y+z)Si3+y+zO10(OH)2,
z+y≤1 |
Extension of MuPa
solution model for phengite. |
|
lcENDI |
clinopyroxne |
Ca1yMg1+ySi2O6 |
C2/c structure. Model should be checked
against source. |
[13] |
lcFSHD |
clinopyroxne |
Ca1yFe1+ySi2O6 |
C2/c structure. Model should be checked
against source. |
[13] |
M(HP) |
magnesite |
MgxFe1xCO3 |
|
[30] |
MaPa |
margarite |
CaxNa1xAl3+xSi3-xO10(OH)2 |
Unpublished fit to field observations,
gives solvus with Tcrit=972
K, Xma=1/3. |
|
melt(HP) |
melt |
Na-Mg-Al-Si-K-Ca-Fe hydrous silicate melt |
Model does not behave well at high pressure
(P>1GPa), see other warnings in solution model file. For granitic
compositions. |
[27,49] |
MELTS(GS) |
melt |
Na-Mg-Al-Si-K-Ca-Fe hydrous silicate melt |
Model for P<1GPa, see warnings in
solution model file. For mafic-ultramafic
compositions. |
[23] |
MF |
magnesioferrite |
MgxFe3xO4 |
Ideal. |
|
Mica(CHA) |
white mica |
KyCaxNa1xy(Mg1-vFev)zMgw TiwAl3+x-w-zSi3-x+zO10(OH)2,
x+y≤1, w+z≤y, |
Less costly than Mica(CHA1)
because it does not allow Ti and Tschermaks
substitutions in Ca- and Na- subsystems. |
[4,8] |
Mica(CHA1) |
white mica |
KyCaxNa1xy(Mg1-vFev)w+z TiwAl3+x-w-zSi3-x+zO10(OH)2,
x+y≤1, w+z≤1 |
See Mica(CHA);
allows Ti and Tschermaks substitutions in Ca- and
Na- subsystems. |
[4,8] |
Mn-Opx |
orthopyroxene |
[MnwMgxFe1xw]2yAl2ySi2yO6,
x+w≤1 |
Should be merged with Opx(HP). |
|
Mont |
monticellite |
CaxMg2xSiO4 |
Ideal. |
|
Mt(W) |
magnetite |
TixFe3xO4 |
Valid from 800 to 1300 C. |
[53] |
MtUl(A) |
magnetite |
TixFe3xO4 |
Akimoto model. Gives solvus
critical T~763K, x~1/3. |
[1] |
MuPa |
mica |
KxNa1xAl3Si3O10(OH)2 |
Basis for most white mica models. |
[7] |
Neph(FB) |
nepheline |
NaxK1xAlSiO4 |
|
[18] |
O(HP) |
olivine |
Mg2xFe2yMn2(1xy)SiO4,
x+y≤1 |
|
[30] |
O(SG) |
olivine |
Mg2xFe22xSiO4 |
Original model refit with one-parameter
speciation model. |
[42] |
O(stx) |
olivine |
[MgxFe1x]2SiO4 |
Use with sfo05ver.dat [33,43] |
[43] |
O(stx7) |
olivine |
[MgxFe1x]2SiO4 |
Use with stx07ver.dat [44]. |
[44] |
O(stx8) |
olivine |
[MgxFe1x]2SiO4 |
Use with stx08ver.dat [54]. |
[54] |
oCcM(HP) |
dolomite |
Ca1xMgxCO3 |
Speciation model. |
[28] |
Omph(HP) |
clinopyroxene |
Nay[CaMgxFe1x]1yAlySi2O6 |
Speciation model, new parameters from
THERMOCALC, extended to Fe-solution. |
[26] |
Omph(GHP) |
clinopyroxene |
Nay+w[CaMgxFe2+(1x)]1ywAlyFe3+wSi2O6 |
Costly speciation model. |
[25] |
Opx(HP) |
orthopyroxene |
[MgxFe1x]2yAl2ySi2yO6 |
Speciation model. |
[26] |
Opx(stx) |
orthopyroxene |
[MgxFe1x]42yAl4(1y)Si4O12 |
Use with sfo05ver.dat [33,43] and
stx07ver.dat [44]. |
[43] |
Opx(stx8) |
orthopyroxene |
[CawFexMg1xw]2[FexAlyMg1xy]2Si4O12,
x+w≤1, x+y≤1 |
Use with stx08ver.dat [54]. |
[54] |
OrFsp(C1) |
feldspar |
KyNaxCa1xyAl2xySi2+x+yO8,
x+y≤1 |
C1 structural state. y>1/3, 1xy<~1/10.
Dubious, see warnings in solution model file. |
[28] |
oAmph(DP) |
orthoamphibole |
Ca2uNau+2(w+z)[MgxFe1x]73u2v4(w+z)Fe3+2zAl4y+3v+2wSi8(y+v)O22(OH)2,
u+v+w+y+z≤1 |
Two parameter speciation model (costly),
see comments in solut_09.dat. |
[14] |
Osm(HP) |
osumilite |
KFe22xMg2x+yAl5ySi7+yO30 |
Ideal. |
[31] |
P |
periclase |
MgxFe1xO
|
Ideal. |
|
Pheng(HP) |
mica |
KxNa1xMgyFezAl32(y+z)Si3+y+zO10(OH)2 |
Only for potassic
phengite. Parameters from THERMOCALC. |
|
Pl(h) |
plagioclase |
NaxCa1xAl2xSi2+xO8 |
High structural state. |
[35] |
Pl(I1,HP) |
feldspar |
KyNaxCa1xyAl2xySi2+x+yO8,
x+y≤1 |
I1 structural state. y<0.04, 1xy<~1/10.
See warnings in solution model file. |
[28] |
Pl(stx8) |
plagioclase |
NaxCa1xAl2xSi2+xO8 |
Use with stx08ver.dat [54]. |
[54] |
pMELTS(G) |
melt |
Na-Mg-Al-Si-K-Ca-Fe hydrous silicate melt |
Model for P>1 GPa?
See warnings in solution model file. For mafic-ultramafic
compositions. |
[24] |
Pmp |
pumpellyite |
pmp-fpmp-mpmp |
Model from Claudio Mazzoli. |
|
Ppv(og) |
post-perovskite |
MgxFe1xyAl2ySi1yO3,
x+y≤1 |
Ideal (Henrys law limit). Use with
sfo05ver.dat [33, 43] and stx07ver.dat [44]. |
[37],[38] |
Ppv(stx8) |
post-perovskite |
MgxFe1xyAl2ySi1yO3,
x+y≤1 |
Use with stx08ver.dat [54]. |
[54] |
Pv(fab) |
perovskite |
MgxFe1xyAl2ySi1yO3,
x+y≤1 |
Estimated regular parameter from source.
Use with sfo05ver.dat [33, 43]. |
[17] |
Pv(stx7) |
perovskite |
MgxFe1xyAl2ySi1yO3,
x+y≤1 |
Use with stx07ver.dat [44] and stx08ver.dat
[54]. |
[44] |
Qpx |
clinopyroxene |
Ca1yMgx(1+y)Fe(1x)(1+y)Si2O6 |
C2/c structure. Model should be checked
against source. |
[39] |
Ring(stx) |
ringwoodite |
[MgxFe1x]2SiO4 |
Use with sfo05ver.dat [33, 43]. |
[43] |
Ring(stx7) |
ringwoodite |
[MgxFe1x]2SiO4 |
Use with stx07ver.dat [44]. |
[44] |
Ring(stx8) |
ringwoodite |
[MgxFe1x]2SiO4 |
Use with stx08ver.dat [54]. |
[54] |
San |
sanidine |
NaxK1xAlSi3O8 |
|
[47] |
San(TH) |
sanidine |
NaxK1xAlSi3O8 |
|
[46] |
Sapp |
sapphirine |
[MgxFe1x]4y/2Al9ySi2y/2O20 |
Ideal, site occupancies as in THERMOCALC
but extended for Fe-solution, see model comments. |
|
Scap |
scapolite |
Na33xCa1+3xAl3(1+x)Si63xO24CO3 |
Presumably from B.K. Kuhns Phd. |
|
Scp |
scapolite |
mizzonite-meionite |
Site occupancies as in R. Abarts Ph.D. thesis, ETH, 1995. |
|
Sp(GS) |
spinel |
MgxFe1xAl2O3 |
From Ganguly
& Saxena,'87. Ghiorso 91 is similar. |
|
Sp(HP) |
spinel |
MgxFe1xAl2O3 |
|
|
Sp(JR) |
spinel |
MgxFe1xAl2O3 |
|
[32] |
Sp(stx) |
spinel |
MgxFe1xAl2O3 |
1/8 inverse spinel.
Use with sfo05ver.dat [33, 43] |
[43] |
Sp(stx7) |
spinel |
MgxFe1xAl2O3 |
Use with stx07ver.dat [44]. |
[44] |
Sp(stx8) |
spinel |
MgxFe1xAl2O3 |
Use with stx08ver.dat [54]. |
[54] |
St(HP) |
staurolite |
Mg4xFe4yMn4(1xy)Al18Si7.5O48H4, x+y≤1 |
Parameters from THERMOCALC. |
|
Sud |
sudoite |
Mg2xFe22xAl4Si3O10(OH)4 |
Ideal, mixing on 2 octahedral sites. |
|
Sud(Livi) |
sudoite |
Mg2xFe22xAl4Si3O10(OH)4 |
Ideal, mixing on 4 octahedral sites. |
[34] |
T |
talc |
[MgxFe1x]3yAl2ySi4yO10(OH)2 |
Ideal. |
|
TiBio(HP) |
biotite |
K[MgxFeyMn1xy]3wz/2TizAl1+2wSi3wO10(OH)2,
x+y≤1 |
Bio(HP) extended to cover a, dubious, Ti
substitution. |
[41,52] |
TiBio(WPH) |
biotite |
K[MgxFe1x]3uvwFe3+wTiuAl1+vSi3vO10(OH)2-2u,
u+v+w≤1 |
Superior to TiBio(HP), but dubious Ti
site population, cf Bio(TCC). |
[51] |
Toop-melt |
melt |
Toop-Samis model for anhydrous silicate melts |
|
[40] |
Tr |
tremolite |
Ca2Mg5xFe5(1x)Si8O22(OH)2 |
Ideal. GlTrTsPg
model should be preferable. |
|
TrTsPg(HP) |
clinoamphibole |
Ca2Naz[MgxFe1x]3+2y+zAl33ySi7+yO22(OH)2,
y+z≤1 |
Use in preference to GlTrTsPg
to reduce costs for glaucophane-poor (low P)
clinoamphibole. |
[48,50] |
Wad(stx) |
waddsleyite |
[MgxFe1x]2SiO4 |
Use with sfo05ver.dat [33, 43] |
[43] |
Wad(stx7) |
waddsleyite |
[MgxFe1x]2SiO4 |
Use with stx07ver.dat [44]. |
[44] |
Wad(stx8) |
waddsleyite |
[MgxFe1x]2SiO4 |
Use with stx08ver.dat [54]. |
[54] |
Wus(fab) |
magnesiowuestite |
MgxFe1xO |
Estimated regular parameter from source.
Use with sfo05ver.dat [33,43] |
[17] |
Wus(stx7) |
magnesiowuestite |
MgxFe1xO |
Use with stx07ver.dat [44] and stx08ver.dat
[54]. |
[44] |
[1] Andersen DJ,Lindsley DH
(1988) Internally Consistent Solution Models for Fe-Mg-Mn-Ti
Oxides - Fe-Ti Oxides. American Mineralogist 73:714-26.
[2] Anovitz L,Essene
EJ (1987) Phase equilibria in the system CaCO3-MgCO3-FeCO3. Journal of Petrology 28:389-414.
[3]
Aranovich LY, Haefner A,
Connolly JAD, Gerya TV,Ulmer
P (2005) Experimental determination of H2O and CO2
activity-composition relations in the H2O-CO2-NaCl fluids
by reversed dehydration and decarbonation reaction.
Manuscript 822-8.
[4]
Auzanneau E, Schmidt MW, Vielzeuf
D,Connolly JAD (2010) Titanium in phengite: a geobarometer for high
temperature eclogites. Contributions To Mineralogy And Petrology 159:1-24.
[5] Berman RG (1990) Mixing Properties of Ca-Mg-Fe-Mn Garnets. American Mineralogist 75:328-44.
[6] Berman RG,Brown TH (1984) A
thermodynamic model for multicomponent melts, with
application to the system CaO-Al2O3-SiO2. Geochimica Et Cosmochimica
Acta 48:661-78.
[7] Chatterjee ND,Froese E (1975) A thermodynamic study of the
pseudo-binary join muscovite-paragonite in the system
KAlSi3O8-NaAlSi3O8-Al2O3-SiO2-H2O.
American Mineralogist 60:985-93.
[8] Coggon R,Holland TJB (2002)
Mixing properties of phengitic micas and revised
garnet-phengite thermobarometers.
Journal of Metamorphic Geology 20:683-96.
[9] Connolly JAD (1995) Phase-diagram methods for
graphitic rocks and application to the system C-O-H-FeO-TiO2-SiO2.
Contributions to Mineralogy and Petrology 119:94-116.
[10]
Connolly JAD,Trommsdorff V
(1991) Petrogenetic grids for metacarbonate rocks - pressure-temperature phase-diagram
projection for mixed-volatile systems. Contributions to Mineralogy and
Petrology 108:93-105.
[11]
Dale J, Holland T,Powell R
(2000) Hornblende-garnet-plagioclase thermobarometry:
a natural assemblage calibration of the thermodynamics of hornblende.
Contributions to Mineralogy and Petrology 140:353-62.
[12]
Dale J, Powell R, White RW, Elmer FL,Holland
TJB (2005) A thermodynamic model for Ca-Na clinoamphiboles
in Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O for petrological
calculations. Journal of Metamorphic Geology 23:771-91.
[13]
Davidson PM, Lindsley DH,Carlson
WD (1988) Thermochemistry of pyroxenes on
the join Mg2Si2O6-CaMgSi2O6
- a revision of the model for pressures up to 30-Kbar. American
Mineralogist 73:1264-6.
[14]
Diener JFA, Powell R, White RW,Holland TJB (2007) A new thermodynamic model for clino- and orthoamphiboles in the
system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O. Journal of Metamorphic Geology 25:631-56.
[15]
Duffy CJ,Greenwood HJ (1979)
Phase-equilibria in the system MgO-MgF2-SiO2-H2O.
American Mineralogist 64:1156-74.
[16]
Engi M,Wersin
X (1987) Something to do with grandite garnet.
SMPM.
[17]
Fabrichnaya O (1998) The
assessment of thermodynamic parameters for solid phases in the Fe-Mg-O and
Fe-Mg-Si-O systems. Calphad-Computer Coupling Of
Phase Diagrams And Thermochemistry
22:85-125.
[18]
Ferry JM,Blencoe JG (1978) Subsolidus Phase Relations in Nepheline-Kalsilite
System at 0.5, 2.0, and 5.0 Kbar. American
Mineralogist 63:1225-40.
[19]
Fuhrman ML,Lindsley DH
(1988) Ternary-Feldspar Modeling and Thermometry. American Mineralogist 73:201-15.
[20]
Ganguly J, Cheng WJ,Tirone M (1996) Thermodynamics of aluminosilicate garnet solid solution: New experimental
data, an optimized model, and thermometric applications. Contributions to
Mineralogy and Petrology 126:137-51.
[21]
Gasparik T (1984) Experimental study of subsolidus phase relations and mixing properties of pyroxene
in the system CaO-Al2O3-SiO2. Geochimica Et Cosmochimica
Acta 48:2537-45.
[22]
Gasparik T (1985) Experimental study of subsolidus phase relations and mixing properties of
pyroxene and plagioclase in the system Na2O-CaO-Al2O3-SiO2.
Contributions to Mineralogy and Petrology 89:346-57.
[23]
Ghiorso MS,Sack
RO (1995) Chemical Mass-Transfer in Magmatic Processes .4. A Revised and Internally Consistent Thermodynamic Model for the
Interpolation and Extrapolation of Liquid-Solid Equilibria
in Magmatic Systems at Elevated-Temperatures and Pressures. Contributions to Mineralogy and
Petrology 119:197-212.
[24]
Ghiorso MS, Hirschmann MM, Reiners PW,Kress VC (2002) The
pMELTS: A revision of MELTS for improved calculation
of phase relations and major element partitioning related to partial melting of
the mantle to 3 GPa. Geochemistry Geophysics Geosystems 3:art. no.-1030.
[25]
Green E, Holland T,Powell R
(2007) An order-disorder model for omphacitic
pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications
to eclogitic rocks. American Mineralogist 92:1181-9.
[26]
Holland T,Powell R (1996) Thermodynamics
of order-disorder in minerals. 2. Symmetric formalism applied to solid
solutions. American Mineralogist 81:1425-37.
[27]
Holland T,Powell R (2001) Calculation
of phase relations involving haplogranitic melts
using an internally consistent thermodynamic dataset. Journal of Petrology 42:673-83.
[28]
Holland T,Powell R (2003) Activity-composition
relations for phases in petrological calculations: an
asymmetric multicomponent formulation.
Contributions to Mineralogy and Petrology 145:492-501.
[29]
Holland T, Baker J,Powell R
(1998) Mixing properties and activity-composition relationships of chlorites
in the system MgO-FeO-Al2O3-SiO2-H2O.
European Journal of Mineralogy 10:395-406.
[30]
Holland TJB,Powell R (1998) An
internally consistent thermodynamic data set for phases of petrological
interest. Journal of Metamorphic Geology 16:309-43.
[31]
Holland TJB, Babu E,Waters DJ (1996) Phase relations of osumilite and dehydration melting in pelitic
rocks: A simple thermodynamic model for the KFMASH system. Contributions To Mineralogy And Petrology 124:383-94.
[32]
Jamieson HE,Roeder PL (1984)
The Distribution of Mg and Fe-2+ between Olivine and Spinel
at 1300-Degrees-C. American Mineralogist 69:283-91.
[33]
Khan A, Connolly JAD,Olsen N
(2006) Constraining the composition and thermal state of the mantle beneath
Europe from inversion of long-period electromagnetic sounding data. Journal of Geophysical Research-Solid Earth 111.
[34]
Livi KJT, Ferry JM, Veblen DR, Frey M,Connolly JAD (2002) Reactions
and physical conditions during metamorphism of Liassic
aluminous black shales and marls in central
Switzerland. European Journal of Mineralogy 14:647-72.
[35]
Newton RC, Charlu TV,Kleppa OJ (1980) Thermochemistry
of the high structural state plagioclases. Geochemica
Cosmochimica Acta 44:933-41.
[36]
Nichols GT, Berry RF,Green
DH (1992) Internally Consistent Gahnitic Spinel-Cordierite-Garnet Equilibria
in the Fmashzn System - Geothermobarometry
and Applications. Contributions to Mineralogy and Petrology 111:362-77.
[37]
Oganov AR,Ono
S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D '' layer.
Nature 430:445-8.
[38]
Ono S,Oganov AR (2005) In
situ observations of phase transition between perovskite
and CaIrO3-type phase in MgSiO3 and pyrolitic mantle
composition. Earth And Planetary Science Letters 236:914-32.
[39]
Ottonello G (1992) Interactions and mixing
properties in the (C2/c) clinopyroxene quadrilateral.
Contributions to Mineralogy and Petrology 111:53-60.
[40]
Ottonello G (2001) Thermodynamic constraints
arising from the polymeric approach to silicate slags:
the system CaO-FeO-SiO2 as an example. Journal of
Non-Crystalline Solids 282:72-85.
[41]
Powell R,Holland T (1999) Relating
formulations of the thermodynamics of mineral solid solutions: Activity
modeling of pyroxenes, amphiboles, and micas. American Mineralogist 84:1-14.
[42]
Sack RO,Ghiorso MS (1989) Importance
of considerations of mixing properties in establishing an internally consistent
thermodynamic database - thermochemistry of minerals
in the system Mg2SiO4-Fe2SiO4-SiO2.
Contributions to Mineralogy and Petrology 102:41-68.
[43]
Stixrude L,Lithgow-Bertelloni
C (2005) Mineralogy and elasticity of the oceanic upper mantle: Origin of
the low-velocity zone. Journal of Geophysical
Research-Solid Earth 110.
[44]
Stixrude L,Lithgow-Bertelloni
C (2007) Influence of phase transformations on lateral heterogeneity and
dynamics in Earth's mantle. Earth And Planetary
Science Letters 263:45-55.
[45]
Tajcmanovα L, Connolly JAD,Cesare B (2009) A thermodynamic model for
titanium and ferric iron solution in biotite. .
Journal of Metamorphic Geology 27:153-64.
[46]
Thompson JB,Hovis GL (1979) Entropy
of Mixing in Sanidine. American Mineralogist 64:57-65.
[47]
Waldbaum DR,Thompson
JB (1968) Mixing Properties Of Sanidine
Crystalline Solutions .2. Calculations Based On Volume Data. American
Mineralogist 53:2000-?
[48]
Wei CJ,Powell R (2003) Phase
relations in high-pressure metapelites in the system
KFMASH (K2O-FeO-MgO-Al2O3-SiO2-H2O) with application to natural rocks.
Contributions to Mineralogy and Petrology 145:301-15.
[49]
White RW, Powell R,Holland
TJB (2001) Calculation of partial melting equilibria
in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O
(NCKFMASH). Journal of Metamorphic Geology 19:139-53.
[50]
White RW, Powell R,Phillips
GN (2003) A mineral equilibria study of the
hydrothermal alteration in mafic greenschist
facies rocks at Kalgoorlie,
Western Australia. Journal of Metamorphic Geology 21:455-68.
[51]
White RW, Powell R,Holland
TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites.
Journal Of Metamorphic Geology 25:511-27.
[52]
White RW, Powell R, Holland TJB,Worley
BA (2000) The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist
and amphibolite facies
conditions: mineral equilibria calculations in the
system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3.
Journal of Metamorphic Geology 18:497-511.
[53]
Wood BJ, et al., Chapter 7, in Reviews in Mineralogy. 1991.
[54]
Xu W, Lithgow-Bertelloni C,
Stixrude L,Ritsema
J (2008) The effect of bulk composition and temperature on mantle seismic
structure. Earth and Planetary Science Letters 275:70-9.