Perple_X Solution Model Glossary

 


Contents


Introduction

This page provides a brief description of, and references for, the solution models implemented in Perple_X solution model files (e.g., solution_model.dat). The page is intended to aid users in selecting suitable solution models. The sources for the models indicated here (References, see also citing Perple_X) are more reliable than the sporadic citations in the solution model file; however the model commentaries often contain additional information about the utility of the models.

Perple_X endmember abbreviations and formulae may vary between thermodynamic data files, refer to thermodynamic_data_files for additional information.

January 19, 2010.


Table Sorted by Perple_X Abbreviations

Unless indicated otherwise, the compositional variables v, w, x, y, and z vary between zero and unity and are determined in Perple_X as a function of computational variables by free-energy minimization.

 

Symbol

Solution

Formula

Notes

Source

AbFsp(C1)

feldspar

KyNaxCax–yAlx–ySi2+x+yO8, x+y≤1

C1 structural state. x>2/3, 1–x–y<~1/10. See warnings in solution model file.

[28]

Aki(fab)

akimotoite

MgxFex–yAl2ySiyO3, x+y≤1

Estimated regular parameter from source. Ilmenite structure. Use with sfo05ver.dat [33,43].

[17]

Aki(stx7)

akimotoite

MgxFex–yAl2ySiyO3, x+y≤1

Ilmenite structure. Use with stx07ver.dat [44].

[44]

Aki(stx8)

akimotoite

MgxFex–yAl2ySiyO3, x+y≤1

Ilmenite structure. Use with stx08ver.dat [54].

[54]

Amph(DHP)

clinoamphibole

 

Superceded by Amph(DPW)

[11]

Amph(DPW)

clinoamphibole

 

Superceded by cAmph(DP).

[12]

Anth

anthophyllite

Mg7xFe7(1–x)Si8O22(OH)2

Ideal, does not extrapolate well to high pressure (P>3GPa).

 

A-phase

phase A

Mg7xFe7(1–x)Si2O8(OH)6

Ideal.

 

Atg

antigorite

Mg48xFe48(1–x)Si34O85(OH)62 

Ideal.

 

B

brucite

MgxFex(OH)

Ideal.

 

Bio(HP)

biotite

K[MgxFeyMn1–x–y]wAl1+2wSiwO10(OH)2, x+y≤1

Speciation model, new parameters from THERMOCALC, extended to cover Mn-solution.

[41]

Bio(TCC)

biotite

K[MgxFeyMn1–x–y]u–v–wFe3+wTiuAl1+vSivO10(OH)2-2u, x+y≤1, u+v+w≤1

Ti-oxy and Fe3+-Tschermaks exchanges.

[45]

C2/c(stx)

C2/c pyroxene

[MgxFex]4Si4O12

Use with sfo05ver.dat [33, 43] and stx07ver.dat [44].

[43]

C2/c(stx8)

C2/c pyroxene

[MgxFex]4Si4O12

Use with stx08ver.dat [54].

[54]

cAmph(DP)

clinoamphibole

Ca2(y+u+v)Nau+2(w+z)[MgxFex]7–3u–2v–4(w+z)Fe3+2zAl4y+3v+2wSi8–(y+v)O22(OH)2, u+v+w+y+z≤1

Costly speciation model, see commentary in solut_09.dat.

[14]

casmelt

melt

CaO-Al2O3-SiO2 melt

Dubious.

[6]

Cc(AE)

calcite

CaxMgxCO3

Entropy model should be checked against source.

[2]

CF(stx8)

calcium ferrite

NaxMgyFex–yAl2-xSixO4, x+y≤1

Use with stx08ver.dat [54].

[54]

Chl(HP)

chlorite

[MgxFewMn1–x–w]y+zAl2(1+y–z)Siy+zO10(OH)8, x+w≤1

Speciation model. Under most circumstances afchl endmember can be excluded to save computational resources.

[29]

chum

clinohumite

Ti-F-OH-Mg-clinohumite.

Model should be checked against source.

[15]

Chum

clinohumite

Mg9xFe9(1–x)Si4O16(OH)

Ideal.

 

Clint

clintonite

CaMgxAl2+2xSixO10(OH)2

Ideal.

 

Cpx(h)

clinopyroxene

NayCay+z[MgxFex]y–zAl1-y+zSi2+zO6, y+z≤1

High structural state, entropy model should be verified against sources. Stability seems excessive.

[21,22]

Cpx(HP)

clinopyroxene

NayCayMgxyFe(1–x)yAlySi2O6

Disordered, new parameters from THERMOCALC, extended to cover Acmite, CaTs, and Cr-solution

[26]

Cpx(l)

clinopyroxene

NayCay+z[MgxFex]y–zAl1-y+zSi2+zO6, y+z≤1

Low structural state, entropy model should be verified against sources. Stability seems reasonable.

[21,22]

Cpx(stx)

clinopyroxene

Ca2yMg4–2x–2yFe2xSi4O12

Use with sfo05ver.dat [33,43].

[43]

Cpx(stx7)

clinopyroxene

Ca2yMg4–2x–2yFe2xSi4O12

Use with stx07ver.dat [44].

[44]

Cpx(stx8)

clinopyroxene

[Cax–yNaxMgy]2[FewMgy+zAlw–x–y–z]2Si4O12, w+x+y+z≤1

Use with stx08ver.dat [54].

[54]

Ctd(HP)

chloritoid

MgxFeyMnx–yAl2SiO5(OH)2, x+y≤1

 

[52]

Cumm

cummingtonite

Mg7xFe7(1–x)Si8O22(OH)2

Ideal.

 

Do(AE)

dolomite

CaMgxFex(CO3)2

Entropy model should be checked against source.

[2]

Do(HP)

dolomite

CaMgxFex(CO3)2

 

[30]

Ep(HP)

epidote

Ca2Al3–2xFe2xSi3O12OH

Speciation model, parameters from THERMOCALC.

 

F

fluid

(H2O)x(CO2)x

Can be used with any Perple_X internal fluid EoS that allows XCO2 as an independent variable.

[10]

F(salt)

fluid

(H2O)x(CO2)y(NaCl)x–y

Choose fluid EoS #5 (CORK) to use this model! VERTEX will automatically computer activities from the Hafner et al. H2O-CO2-NaCl EoS.

[3]

feldspar

feldspar

KyNaxCax–yAlx–ySi2+x+yO8, x+y≤1

High structural state.

[19]

Fphl

phlogopite

KMg3AlSi3O10(OH)2(1–x)Fx

Ideal.

 

Fsp(C1)

feldspar

KyNaxCax–yAlx–ySi2+x+yO8, x+y≤1

C1 structural state. See warnings in solution model file.

[28]

GaHcSp

spinel

MgxFeyZnx–yAl2O3, x+y≤1

Normal spinel, data from Jiri Konopasek.

[36]

GCOHF

fluid

H2xOx

Can be used with any Perple_X internal fluid EoS that allows XO as an independent variable.

[9]

Gl

glaucophane

Na2Mg3xFe3(1–x)Al2Si8O22(OH)2

Ideal. GlTrTsPg model should be preferable.

 

GlTrTs

clinoamphibole

Ca2–2wNa2w[MgxFex]3+2yAl3–3y–wSi7+w+yO22(OH)2, w+y≤1

Can be used in preference to GlTrTsPg to save computational resources for non-pargasitic (high P) clinoamphibole.

[48,50]

GlTrTsPg

clinoamphibole

Ca2–2wNaz+2w[MgxFex]3+2y+zAl3–3y–wSi7+w+yO22(OH)2, w+y+z≤1

Preferable for calculations over a large pressure range. See also GlTrTs and TrTsPg(HP).

[48,50]

GrAd

garnet

Ca3Fe3+2(1–x)Al2xSi3O12

Ideal.

 

GrAd(EWHP)

garnet

[FexCayMg1–x–y]3[Fe1–wAlw]2Si3O12 x+y ≤1

Verify in original reference that W’s are for ionic model.

[16]

GrPyAlSp(B)

garnet

Fe3xCa3yMg3zMn3(1–x–y–z)Al2Si3O12, x+y+z≤1

 

[5]

GrPyAlSp(G)

garnet

Fe3xCa3yMg3zMn3(1–x–y–z)Al2Si3O12, x+y+z≤1

Check against published version.

[20]

Gt(HP)

garnet

Fe3xCa3yMg3zMn3(1–x–y–z)Al2Si3O12, x+y+z≤1

 

[30]

Gt(stx)

garnet

[FexCayMg(1-x+y+z/3)]3Al2–2zSi3+zO12, x+y≤1

Limited majoritic substitution. Use with sfo05ver.dat [33,43] and stx07ver.dat [44].

[43]

Gt(stx8)

garnet

[(Na1/3Al2/3)wFexCayMg1-w-x-y]3[MgzAl1-z-wSiw+z]2Si2O12, w+x+y+z≤1

Use with stx08ver.dat [54].

[54]

Gt(WPH)

garnet

[FexCayMgzMn1–x–y–z]3[Fe1–wAlw]2Si3O12 x+y+z≤1

Parameters change with the wind.

[52]

hCrd

cordierite

Mg2xFe2yMn2(1–x–y)Al4Si5O18•(H2O)z, x+y≤1

Ideal

 

IlGkPy

ilmenite

MgxMnyFe1–x–yTiO3, x+y≤1

Ideal.

 

IlHm(A)

ilmenite

Fe2–xTixO3

ilmenite coexisiting with magnetite, its performance at T~1473 K criticized by Ghiorso, but this probably the best model for T<1073 K. Gives solvus critical T~973 K, x~1/2.                 

[1]

Kf

alkali feldspar

NaxKxAlSi3O8

Waldbaum & Thompson mixing model for sanidine combined with low structural state endmembers.

[47]

KN-Phen

mica

KxNaxMgyFezAl3–2(y+z)Si3+y+zO10(OH)2, z+y≤1

Extension of MuPa solution model for phengite.

 

lcENDI

clinopyroxne

CayMg1+ySi2O6

C2/c structure. Model should be checked against source.

[13]

lcFSHD

clinopyroxne

CayFe1+ySi2O6

C2/c structure. Model should be checked against source.

[13]

M(HP)

magnesite

MgxFexCO3

 

[30]

MaPa

margarite

CaxNaxAl3+xSi3-xO10(OH)2

Unpublished fit to field observations, gives solvus with Tcrit=972 K, Xma=1/3.

 

melt(HP)

melt

Na-Mg-Al-Si-K-Ca-Fe hydrous silicate melt

Model does not behave well at high pressure (P>1GPa), see other warnings in solution model file. For granitic compositions.

[27,49]

MELTS(GS)

melt

Na-Mg-Al-Si-K-Ca-Fe hydrous silicate melt

Model for P<1GPa, see warnings in solution model file. For mafic-ultramafic compositions.

[23]

MF

magnesioferrite

MgxFexO4

Ideal.

 

Mica(CHA)

white mica

KyCaxNax–y(Mg1-vFev)zMgw TiwAl3+x-w-zSi3-x+zO10(OH)2, x+y≤1, w+zy,

Less costly than Mica(CHA1) because it does not allow Ti and Tschermaks substitutions in Ca- and Na- subsystems.

[4,8]

Mica(CHA1)

white mica

KyCaxNax–y(Mg1-vFev)w+z TiwAl3+x-w-zSi3-x+zO10(OH)2, x+y≤1, w+z≤1

See Mica(CHA); allows Ti and Tschermaks substitutions in Ca- and Na- subsystems.

[4,8]

Mn-Opx

orthopyroxene

[MnwMgxFex–w]yAl2ySiyO6, x+w≤1

Should be merged with Opx(HP).

 

Mont

monticellite

CaxMgxSiO4

Ideal.

 

Mt(W)

magnetite

TixFexO4

Valid from 800 to 1300 C.

[53]

MtUl(A)

magnetite

TixFexO4

Akimoto model. Gives solvus critical T~763K, x~1/3.

[1]

MuPa

mica

KxNaxAl3Si3O10(OH)2

Basis for most white mica models.

[7]

Neph(FB)

nepheline

NaxKxAlSiO4

 

[18]

O(HP)

olivine

Mg2xFe2yMn2(1–x–y)SiO4, x+y≤1

 

[30]

O(SG)

olivine

Mg2xFe2–2xSiO4

Original model refit with one-parameter speciation model.

[42]

O(stx)

olivine

[MgxFex]2SiO4

Use with sfo05ver.dat [33,43]

[43]

O(stx7)

olivine

[MgxFex]2SiO4

Use with stx07ver.dat [44].

[44]

O(stx8)

olivine

[MgxFex]2SiO4

Use with stx08ver.dat [54].

[54]

oCcM(HP)

dolomite

CaxMgxCO3

Speciation model.

[28]

Omph(HP)

clinopyroxene

Nay[CaMgxFex]yAlySi2O6

Speciation model, new parameters from THERMOCALC, extended to Fe-solution.

[26]

Omph(GHP)

clinopyroxene

Nay+w[CaMgxFe2+(1–x)]y–wAlyFe3+wSi2O6

Costly speciation model.

[25]

Opx(HP)

orthopyroxene

[MgxFex]yAl2ySiyO6

Speciation model.

[26]

Opx(stx)

orthopyroxene

[MgxFex]4–2yAl4(1–y)Si4O12

Use with sfo05ver.dat [33,43] and stx07ver.dat [44].

[43]

Opx(stx8)

orthopyroxene

[CawFexMgx–w]2[FexAlyMgx–y]2Si4O12, x+w≤1, x+y≤1

Use with stx08ver.dat [54].

[54]

OrFsp(C1)

feldspar

KyNaxCax–yAlx–ySi2+x+yO8, x+y≤1

C1 structural state. y>1/3, 1–x–y<~1/10. Dubious, see warnings in solution model file.

[28]

oAmph(DP)

orthoamphibole

Ca2uNau+2(w+z)[MgxFex]7–3u–2v–4(w+z)Fe3+2zAl4y+3v+2wSi8–(y+v)O22(OH)2, u+v+w+y+z≤1

Two parameter speciation model (costly), see comments in solut_09.dat.

[14]

Osm(HP)

osumilite

KFe2–2xMg2x+yAl5–ySi7+yO30

Ideal.

[31]

P

periclase

MgxFexO

Ideal.

 

Pheng(HP)

mica

KxNaxMgyFezAl3–2(y+z)Si3+y+zO10(OH)2

Only for potassic phengite. Parameters from THERMOCALC.

 

Pl(h)

plagioclase

NaxCaxAlxSi2+xO8

High structural state.

[35]

Pl(I1,HP)

feldspar

KyNaxCax–yAlx–ySi2+x+yO8, x+y≤1

I1 structural state. y<0.04, 1–x–y<~1/10. See warnings in solution model file.

[28]

Pl(stx8)

plagioclase

NaxCaxAlxSi2+xO8

Use with stx08ver.dat [54].

[54]

pMELTS(G)

melt

Na-Mg-Al-Si-K-Ca-Fe hydrous silicate melt

Model for P>1 GPa? See warnings in solution model file. For mafic-ultramafic compositions.

[24]

Pmp

pumpellyite

pmp-fpmp-mpmp

Model from Claudio Mazzoli.

 

Ppv(og)

post-perovskite

MgxFex–yAl2ySiyO3, x+y≤1

Ideal (Henry’s law limit). Use with sfo05ver.dat [33, 43] and stx07ver.dat [44].

[37],[38]

Ppv(stx8)

post-perovskite

MgxFex–yAl2ySiyO3, x+y≤1

Use with stx08ver.dat [54].

[54]

Pv(fab)

perovskite

MgxFex–yAl2ySiyO3, x+y≤1

Estimated regular parameter from source. Use with sfo05ver.dat [33, 43].

[17]

Pv(stx7)

perovskite

MgxFex–yAl2ySiyO3, x+y≤1

Use with stx07ver.dat [44] and stx08ver.dat [54].

[44]

Qpx

clinopyroxene

CayMgx(1+y)Fe(1–x)(1+y)Si2O6

C2/c structure. Model should be checked against source.

[39]

Ring(stx)

ringwoodite

[MgxFex]2SiO4

Use with sfo05ver.dat [33, 43].

[43]

Ring(stx7)

ringwoodite

[MgxFex]2SiO4

Use with stx07ver.dat [44].

[44]

Ring(stx8)

ringwoodite

[MgxFex]2SiO4

Use with stx08ver.dat [54].

[54]

San

sanidine

NaxKxAlSi3O8

 

[47]

San(TH)

sanidine

NaxKxAlSi3O8

 

[46]

Sapp

sapphirine

[MgxFex]y/2AlySiy/2O20

Ideal, site occupancies as in THERMOCALC but extended for Fe-solution, see model comments.

 

Scap

scapolite

Na3–3xCa1+3xAl3(1+x)Si6–3xO24CO3

Presumably from B.K. Kuhn’s Phd.

 

Scp

scapolite

mizzonite-meionite

Site occupancies as in R. Abart’s Ph.D. thesis, ETH, 1995.

 

Sp(GS)

spinel

MgxFe1–xAl2O3

From Ganguly & Saxena,'87. Ghiorso ’91 is similar.

 

Sp(HP)

spinel

MgxFe1–xAl2O3

 

 

Sp(JR)

spinel

MgxFe1–xAl2O3

 

[32]

Sp(stx)

spinel

MgxFe1–xAl2O3

1/8 inverse spinel. Use with sfo05ver.dat [33, 43]

[43]

Sp(stx7)

spinel

MgxFe1–xAl2O3

Use with stx07ver.dat [44].

[44]

Sp(stx8)

spinel

MgxFe1–xAl2O3

Use with stx08ver.dat [54].

[54]

St(HP)

staurolite

Mg4xFe4yMn4(1–x–y)Al18Si7.5O48H4, x+y≤1

Parameters from THERMOCALC.

 

Sud

sudoite

Mg2xFe2–2xAl4Si3O10(OH)4

Ideal, mixing on 2 octahedral sites.

 

Sud(Livi)

sudoite

Mg2xFe2–2xAl4Si3O10(OH)4

Ideal, mixing on 4 octahedral sites.

[34]

T

talc

[MgxFe1–x]yAl2ySiyO10(OH)2

Ideal.

 

TiBio(HP)

biotite

K[MgxFeyMn1–x–y]w–z/2TizAl1+2wSiwO10(OH)2, x+y≤1

Bio(HP) extended to cover a, dubious, Ti substitution.

[41,52]

TiBio(WPH)

biotite

K[MgxFe1–x]3–u–v–wFe3+wTiuAl1+vSi3–vO10(OH)2-2u, u+v+w≤1

Superior to TiBio(HP), but dubious Ti site population, cf Bio(TCC).

[51]

Toop-melt

melt

Toop-Samis model for anhydrous silicate melts

 

[40]

Tr

tremolite

Ca2Mg5xFe5(1–x)Si8O22(OH)2

Ideal. GlTrTsPg model should be preferable.

 

TrTsPg(HP)

clinoamphibole

Ca2Naz[MgxFe1–x]3+2y+zAl3–3ySi7+yO22(OH)2, y+z≤1

Use in preference to GlTrTsPg to reduce costs for glaucophane-poor (low P) clinoamphibole.

[48,50]

Wad(stx)

waddsleyite

[MgxFe1–x]2SiO4

Use with sfo05ver.dat [33, 43]

[43]

Wad(stx7)

waddsleyite

[MgxFe1–x]2SiO4

Use with stx07ver.dat [44].

[44]

Wad(stx8)

waddsleyite

[MgxFe1–x]2SiO4

Use with stx08ver.dat [54].

[54]

Wus(fab)

magnesiowuestite

MgxFe1–xO

Estimated regular parameter from source. Use with sfo05ver.dat [33,43]

[17]

Wus(stx7)

magnesiowuestite

MgxFe1–xO

Use with stx07ver.dat [44] and stx08ver.dat [54].

[44]


References

[1]  Andersen DJ,Lindsley DH (1988) Internally Consistent Solution Models for Fe-Mg-Mn-Ti Oxides - Fe-Ti Oxides. American Mineralogist 73:714-26.

[2]  Anovitz L,Essene EJ (1987) Phase equilibria in the system CaCO3-MgCO3-FeCO3. Journal of Petrology 28:389-414.

[3]  Aranovich LY, Haefner A, Connolly JAD, Gerya TV,Ulmer P (2005) Experimental determination of H2O and CO2 activity-composition relations in the H2O-CO2-NaCl fluids by reversed dehydration and decarbonation reaction. Manuscript 822-8.

[4]  Auzanneau E, Schmidt MW, Vielzeuf D,Connolly JAD (2010) Titanium in phengite: a geobarometer for high temperature eclogites. Contributions To Mineralogy And Petrology 159:1-24.

[5]  Berman RG (1990) Mixing Properties of Ca-Mg-Fe-Mn Garnets. American Mineralogist 75:328-44.

[6]  Berman RG,Brown TH (1984) A thermodynamic model for multicomponent melts, with application to the system CaO-Al2O3-SiO2. Geochimica Et Cosmochimica Acta 48:661-78.

[7]  Chatterjee ND,Froese E (1975) A thermodynamic study of the pseudo-binary join muscovite-paragonite in the system KAlSi3O8-NaAlSi3O8-Al2O3-SiO2-H2O. American Mineralogist 60:985-93.

[8]  Coggon R,Holland TJB (2002) Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. Journal of Metamorphic Geology 20:683-96.

[9]  Connolly JAD (1995) Phase-diagram methods for graphitic rocks and application to the system C-O-H-FeO-TiO2-SiO2. Contributions to Mineralogy and Petrology 119:94-116.

[10] Connolly JAD,Trommsdorff V (1991) Petrogenetic grids for metacarbonate rocks - pressure-temperature phase-diagram projection for mixed-volatile systems. Contributions to Mineralogy and Petrology 108:93-105.

[11] Dale J, Holland T,Powell R (2000) Hornblende-garnet-plagioclase thermobarometry: a natural assemblage calibration of the thermodynamics of hornblende. Contributions to Mineralogy and Petrology 140:353-62.

[12] Dale J, Powell R, White RW, Elmer FL,Holland TJB (2005) A thermodynamic model for Ca-Na clinoamphiboles in Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O for petrological calculations. Journal of Metamorphic Geology 23:771-91.

[13] Davidson PM, Lindsley DH,Carlson WD (1988) Thermochemistry of pyroxenes on the join Mg2Si2O6-CaMgSi2O6 - a revision of the model for pressures up to 30-Kbar. American Mineralogist 73:1264-6.

[14] Diener JFA, Powell R, White RW,Holland TJB (2007) A new thermodynamic model for clino- and orthoamphiboles in the system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O. Journal of Metamorphic Geology 25:631-56.

[15] Duffy CJ,Greenwood HJ (1979) Phase-equilibria in the system MgO-MgF2-SiO2-H2O. American Mineralogist 64:1156-74.

[16] Engi M,Wersin X (1987) Something to do with grandite garnet. SMPM.

[17] Fabrichnaya O (1998) The assessment of thermodynamic parameters for solid phases in the Fe-Mg-O and Fe-Mg-Si-O systems. Calphad-Computer Coupling Of Phase Diagrams And Thermochemistry 22:85-125.

[18] Ferry JM,Blencoe JG (1978) Subsolidus Phase Relations in Nepheline-Kalsilite System at 0.5, 2.0, and 5.0 Kbar. American Mineralogist 63:1225-40.

[19] Fuhrman ML,Lindsley DH (1988) Ternary-Feldspar Modeling and Thermometry. American Mineralogist 73:201-15.

[20] Ganguly J, Cheng WJ,Tirone M (1996) Thermodynamics of aluminosilicate garnet solid solution: New experimental data, an optimized model, and thermometric applications. Contributions to Mineralogy and Petrology 126:137-51.

[21] Gasparik T (1984) Experimental study of subsolidus phase relations and mixing properties of pyroxene in the system CaO-Al2O3-SiO2. Geochimica Et Cosmochimica Acta 48:2537-45.

[22] Gasparik T (1985) Experimental study of subsolidus phase relations and mixing properties of pyroxene and plagioclase in the system Na2O-CaO-Al2O3-SiO2. Contributions to Mineralogy and Petrology 89:346-57.

[23] Ghiorso MS,Sack RO (1995) Chemical Mass-Transfer in Magmatic Processes .4. A Revised and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of Liquid-Solid Equilibria in Magmatic Systems at Elevated-Temperatures and Pressures. Contributions to Mineralogy and Petrology 119:197-212.

[24] Ghiorso MS, Hirschmann MM, Reiners PW,Kress VC (2002) The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochemistry Geophysics Geosystems 3:art. no.-1030.

[25] Green E, Holland T,Powell R (2007) An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications to eclogitic rocks. American Mineralogist 92:1181-9.

[26] Holland T,Powell R (1996) Thermodynamics of order-disorder in minerals. 2. Symmetric formalism applied to solid solutions. American Mineralogist 81:1425-37.

[27] Holland T,Powell R (2001) Calculation of phase relations involving haplogranitic melts using an internally consistent thermodynamic dataset. Journal of Petrology 42:673-83.

[28] Holland T,Powell R (2003) Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contributions to Mineralogy and Petrology 145:492-501.

[29] Holland T, Baker J,Powell R (1998) Mixing properties and activity-composition relationships of chlorites in the system MgO-FeO-Al2O3-SiO2-H2O. European Journal of Mineralogy 10:395-406.

[30] Holland TJB,Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology 16:309-43.

[31] Holland TJB, Babu E,Waters DJ (1996) Phase relations of osumilite and dehydration melting in pelitic rocks: A simple thermodynamic model for the KFMASH system. Contributions To Mineralogy And Petrology 124:383-94.

[32] Jamieson HE,Roeder PL (1984) The Distribution of Mg and Fe-2+ between Olivine and Spinel at 1300-Degrees-C. American Mineralogist 69:283-91.

[33] Khan A, Connolly JAD,Olsen N (2006) Constraining the composition and thermal state of the mantle beneath Europe from inversion of long-period electromagnetic sounding data. Journal of Geophysical Research-Solid Earth 111.

[34] Livi KJT, Ferry JM, Veblen DR, Frey M,Connolly JAD (2002) Reactions and physical conditions during metamorphism of Liassic aluminous black shales and marls in central Switzerland. European Journal of Mineralogy 14:647-72.

[35] Newton RC, Charlu TV,Kleppa OJ (1980) Thermochemistry of the high structural state plagioclases. Geochemica Cosmochimica Acta 44:933-41.

[36] Nichols GT, Berry RF,Green DH (1992) Internally Consistent Gahnitic Spinel-Cordierite-Garnet Equilibria in the Fmashzn System - Geothermobarometry and Applications. Contributions to Mineralogy and Petrology 111:362-77.

[37] Oganov AR,Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D '' layer. Nature 430:445-8.

[38] Ono S,Oganov AR (2005) In situ observations of phase transition between perovskite and CaIrO3-type phase in MgSiO3 and pyrolitic mantle composition. Earth And Planetary Science Letters 236:914-32.

[39] Ottonello G (1992) Interactions and mixing properties in the (C2/c) clinopyroxene quadrilateral. Contributions to Mineralogy and Petrology 111:53-60.

[40] Ottonello G (2001) Thermodynamic constraints arising from the polymeric approach to silicate slags: the system CaO-FeO-SiO2 as an example. Journal of Non-Crystalline Solids 282:72-85.

[41] Powell R,Holland T (1999) Relating formulations of the thermodynamics of mineral solid solutions: Activity modeling of pyroxenes, amphiboles, and micas. American Mineralogist 84:1-14.

[42] Sack RO,Ghiorso MS (1989) Importance of considerations of mixing properties in establishing an internally consistent thermodynamic database - thermochemistry of minerals in the system Mg2SiO4-Fe2SiO4-SiO2. Contributions to Mineralogy and Petrology 102:41-68.

[43] Stixrude L,Lithgow-Bertelloni C (2005) Mineralogy and elasticity of the oceanic upper mantle: Origin of the low-velocity zone. Journal of Geophysical Research-Solid Earth 110.

[44] Stixrude L,Lithgow-Bertelloni C (2007) Influence of phase transformations on lateral heterogeneity and dynamics in Earth's mantle. Earth And Planetary Science Letters 263:45-55.

[45] Tajcmanovα L, Connolly JAD,Cesare B (2009) A thermodynamic model for titanium and ferric iron solution in biotite. . Journal of Metamorphic Geology 27:153-64.

[46] Thompson JB,Hovis GL (1979) Entropy of Mixing in Sanidine. American Mineralogist 64:57-65.

[47] Waldbaum DR,Thompson JB (1968) Mixing Properties Of Sanidine Crystalline Solutions .2. Calculations Based On Volume Data. American Mineralogist 53:2000-?

[48] Wei CJ,Powell R (2003) Phase relations in high-pressure metapelites in the system KFMASH (K2O-FeO-MgO-Al2O3-SiO2-H2O) with application to natural rocks. Contributions to Mineralogy and Petrology 145:301-15.

[49] White RW, Powell R,Holland TJB (2001) Calculation of partial melting equilibria in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology 19:139-53.

[50] White RW, Powell R,Phillips GN (2003) A mineral equilibria study of the hydrothermal alteration in mafic greenschist facies rocks at Kalgoorlie, Western Australia. Journal of Metamorphic Geology 21:455-68.

[51] White RW, Powell R,Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. Journal Of Metamorphic Geology 25:511-27.

[52] White RW, Powell R, Holland TJB,Worley BA (2000) The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology 18:497-511.

[53] Wood BJ, et al., Chapter 7, in Reviews in Mineralogy. 1991.

[54] Xu W, Lithgow-Bertelloni C, Stixrude L,Ritsema J (2008) The effect of bulk composition and temperature on mantle seismic structure. Earth and Planetary Science Letters 275:70-9.